###
计算机系统应用英文版:2018,27(7):26-33
本文二维码信息
码上扫一扫!
安卓恶意软件的静态检测方法
(中南民族大学 电子信息工程学院, 武汉 430074)
Static Detection Method of Android Malware
(College of Electronics and Information Engineering, South-Central University for Nationalities, Wuhan 430074, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2242次   下载 3354
Received:November 03, 2017    Revised:November 27, 2017
中文摘要: 近几年,Android平台的恶意软件数量几乎以几何式的速度增长,故提出一种恶意软件检测方法是必要的.本文利用现如今疯涨的Android恶意样本量和机器学习算法建立分类预测模型实现对恶意软件的静态检测.首先,通过反编译APK文件获取AndroidManifest.xml文件中权限特征,baksmali工具反编译class.dex成smali文件得到危险API特征.然后运用机器学习中多种分类和预处理算法比较每一特征和联合特征检测的准确率.实验结果表明,联合特征检测准确率高于单独特征,准确率达到97.5%.
中文关键词: API  权限  APK  静态检测  恶意软件
Abstract:In recent years, the number of malware on the Android platform has a geometrical growth. Therefore, it is very necessary to have a method to detect Android malware. This study experiments with a large number of Android malware samples and machine learning technology to establish a prediction model for malware classification, which is run in the static detection process. First, we obtain the permissions and the dangerous API information of Android applications, the permissions feature in its AndroidManifest.xml file by decompiling APK files and its dangerous API features by translating decompiles class.dex files into smali files together with the baksmali tool. Then, we use multiple classification algorithms and preprocessing algorithm to compare the accuracy rate of the single detection and the conjoint detection. The experimental results show that the accuracy rate of the conjoint detection is higher than that of the single detection, and the accuracy rate reaches up to 97.5%.
keywords: API  permission  APK  static detection  malware
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
陈红闵,胡江村.安卓恶意软件的静态检测方法.计算机系统应用,2018,27(7):26-33
CHEN Hong-Min,HU Jiang-Cun.Static Detection Method of Android Malware.COMPUTER SYSTEMS APPLICATIONS,2018,27(7):26-33