###
计算机系统应用英文版:2018,27(7):199-204
本文二维码信息
码上扫一扫!
基于网络搜索数据的游客量组合预测模型
(西安理工大学 经济与管理学院, 西安 710054)
Multi-Models Combination Tourists Quantity Forecasting Based on Network Search Data
(School of Economics and Management, Xi'an University of Technology, Xi'an 710054, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1631次   下载 2583
Received:October 31, 2017    Revised:November 21, 2017
中文摘要: 随着信息技术的不断发展,基于网络数据对事物近期发展态势预测成为热点.本文以北京市月度游客量预测为目标,以相关网络关键词搜索指数为自变量建立了BP神经网络、支持向量回归和随机森林三种单一预测模型,在此基础上构建组合模型以提高预测准确度.实验结果表明:基于GBDT建立的组合模型达到了较高的预测准确度,误差仅为3.16%,预测结果可以为旅游管理部门提供决策支持.
Abstract:With the continuous development of information technology, the forecast of the recent development of things based on the network data has become a hotspot. In order to predict the monthly number of tourists in Beijing, this study established three kinds of single models with the search index of the relevant network keywords as independent variables:BP neural network, support vector regression, and random forest, and constructed a variety of combinatorial models to improve the prediction accuracy. The experimental results show that the combination of models based on GBDT have achieved higher prediction accuracy, the error is 3.16%. The forecast results can provide decision support for tourism management.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省重点学科资助项目(107-00x901)
引用文本:
谢天保,赵萌.基于网络搜索数据的游客量组合预测模型.计算机系统应用,2018,27(7):199-204
XIE Tian-Bao,ZHAO Meng.Multi-Models Combination Tourists Quantity Forecasting Based on Network Search Data.COMPUTER SYSTEMS APPLICATIONS,2018,27(7):199-204