###
计算机系统应用英文版:2018,27(6):202-208
本文二维码信息
码上扫一扫!
基于DM642的手机QR码检测与识别
(福建师范大学 光电与信息工程学院 医学光电科学与技术教育部重点实验室, 福州 350007)
Detection and Recognition of Mobile QR-Code Based on DM642
(Key Laboratory of Optoelectronic Science and Technology for Medicine(Ministry of Education), College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1701次   下载 1826
Received:October 07, 2017    Revised:November 01, 2017
中文摘要: 基于市场上二维条码设备的广泛需求,研究了基于DM642的QR码的检测与识别技术.本文针对嵌入式智能设备获取的QR码(Quick Response Code,QR)图像严重倾斜与高度畸变问题,提出了基于位置探测图形的轮廓嵌套特性与轮廓之间面积比例关系来实现QR码定位的算法,接着以直线逼近的方法精确定位QR码的4个角点,然后运用逆透视变换与旋转校正的原理实现QR码的复原操作,最后基于复原后的图像通过网格采样来获取整个二维码的“01”矩阵,以便于后面的QR码解码.最终将算法移植到DM642上运行,能有效解决图像倾斜与畸变问题且解码效果良好.
中文关键词: DM642  倾斜畸变  轮廓嵌套  QR码  直线逼近  网格采样
Abstract:According to the extensive demand of two-dimensional (2D) bar code devices on the market, we studied the QR-code detection and recognition technology based on mobile DM642. This study proposes an algorithm based on position detection patterns, which have the nesting feature between the contour and the connection of area ratio. It locates the QR-code in order to solve the problem of skew and distortion of the image in embedded intelligent devices. Then, it precisely positions the four angular point coordinates of the QR-code by the method of linear approximation, and the QR-code is reconstructed by the principle of inverse perspective transformation and rotation correction. Finally, it obtains the whole 2D code "01" matrix by the grid sampling based on the reconstructed image, which is convenient for the decoding of QR-code. We transplanted the algorithm to the DM642 to run. It can effectively solve the image inclination and distortion problems and decoding effect is normal.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61179011);国家自然科学基金青年基金(41701491);福建省自然科学基金(2017J01464);福建教育厅项目(JAS151254)
引用文本:
陈存弟,刘金清,施文灶,邓淑敏,周晓童,吴庆祥.基于DM642的手机QR码检测与识别.计算机系统应用,2018,27(6):202-208
CHEN Cun-Di,LIU Jin-Qing,SHI Wen-Zao,DENG Shu-Min,ZHOU Xiao-Tong,WU Qing-Xiang.Detection and Recognition of Mobile QR-Code Based on DM642.COMPUTER SYSTEMS APPLICATIONS,2018,27(6):202-208