###
计算机系统应用英文版:2018,27(6):124-128
本文二维码信息
码上扫一扫!
改进微分进化算法在压缩感知中的应用
(西安理工大学 理学院, 西安 710054)
Application of Improved Differential Evolution Algorithm in Compressed Sensing
(School of Science, Xi'an University of Technology, Xi'an 710054, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2068次   下载 1881
Received:September 26, 2017    Revised:October 18, 2017
中文摘要: 压缩感知是基于信号稀疏性提出的采样理论,它在压缩成像、医学图像、雷达成像、天文学、通信等领域都有广泛的应用.压缩感知问题的求解本质上是一个优化问题,本文在微分进化算法的基础上对其改进,提出了一种改进微分进化算法,将其应用于压缩感知问题的求解中,取得了良好的效果.
Abstract:Compressed sensing is a sampling theory based on the sparsity of the signal. It has been widely used in the fields of compression imaging, medical imaging, radar imaging, astronomy, communication, and so on. The solution of the compressed sensing problem is essentially an optimization problem, on the basis of differential evolution algorithm. This study proposed an improved differential evolution algorithm, and the algorithm is applied to the solution of compressed sensing problem, and has achieved sound results.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(51679186);青年科学基金(11601418)
引用文本:
闵涛,李艳敏.改进微分进化算法在压缩感知中的应用.计算机系统应用,2018,27(6):124-128
MIN Tao,LI Yan-Min.Application of Improved Differential Evolution Algorithm in Compressed Sensing.COMPUTER SYSTEMS APPLICATIONS,2018,27(6):124-128