###
计算机系统应用英文版:2018,27(5):112-118
本文二维码信息
码上扫一扫!
基于DPP改进RANSAC算法的图像拼接
(1.杭州电子科技大学 计算机学院 图形图像研究所, 杭州 310018;2.浙江传媒学院 浙江广播电视技术研究所, 杭州 310018;3.沈阳工业大学 信息科学与工程学院, 沈阳 110023)
Image Stitching Based on DPP Improved RANSAC Algorithm
(1.Institute of Graphic and Image, School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China;2.Institute of Zhejiang Radio and Television Technology, Zhejiang University of Media and Communications, Hangzhou 310018, China;3.Institute of Information Science and Engineering, Shenyang University of Technology, Shenyang 110023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2041次   下载 2276
Received:September 15, 2017    Revised:September 30, 2017
中文摘要: 为提高图像拼接时的配准速度和精度,针对鲁棒性模型估计问题,提出一种基于行列式点过程的改进RANSAC算法(Random Sample Consensus).该方法利用行列式点过程抽样法的全局负相关特性对匹配的特征点进行建模,实现抽样点的均匀化和分散化,剔除一些错误匹配点.用行列式点过程抽取的点集作为RANSAC算法的输入来求取变换矩阵.实验结果表明:该算法相对于传统的RANSAC算法,能够保持较高的精度和鲁棒性,减少传统RANSAC算法迭代次数,显著提升图像自动拼接的计算效率.
Abstract:To improve the speed and precision of registration in image stitching, this study proposes a modified RANSAC algorithm based on Determinantal Point Processes (DPP), aiming to tackle the issue of robustness model estimation. This method utilizes global negative correlation of the DPP sampling to model matching feature points, eliminates those incorrect matching points, and therefore realizes the homogenization and decentralization of the sampling. The point set extracted in DPP is used as the input of RANSAC to elicit transformation matrix. Experimental results show that compared with traditional RANSAC algorithm, this algorithm ensures higher accuracy and robustness, which greatly enhances the efficiency of automatic image stitching.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61602402);浙江省公益技术研究项目(2016C31085)
引用文本:
汪旌,张赟,陈爽.基于DPP改进RANSAC算法的图像拼接.计算机系统应用,2018,27(5):112-118
WANG Jing,ZHANG Yun,CHEN Shuang.Image Stitching Based on DPP Improved RANSAC Algorithm.COMPUTER SYSTEMS APPLICATIONS,2018,27(5):112-118