本文已被:浏览 2423次 下载 2251次
Received:September 01, 2017 Revised:September 20, 2017
Received:September 01, 2017 Revised:September 20, 2017
中文摘要: 在针对大数据的迅速增长,为了改善协同过滤算法的推荐效率,使得推荐精度越来越高,提出基于Hadoop平台的协同过滤并行化算法,将传统的基于用户的协同过滤在Hadoop平台下进行MapReduce编程模型,实现并行化.通过利用MovieLens公用数据集对改进前后的算法对比,验证了并行化的协同过滤效率更高,也更加适合大规模数据的推荐.
Abstract:In order to improve the recommendation efficiency of collaborative filtering algorithm, this study proposes a collaborative filtering parallelization algorithm based on Hadoop platform. The traditional user-based collaborative filtering is carried out under Hadoop platform for MapReduce Programming model, to achieve parallelization. By using the MovieLens common data set to improve the comparison before and after the algorithm, verify that the parallel collaborative filtering efficiency is higher, and also more suitable for large-scale data recommendation.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
曹霞,谢颖华.基于Hadoop的协同过滤并行化算法.计算机系统应用,2018,27(5):166-170
CAO Xia,XIE Ying-Hua.Parallel Algorithm of Collaborative Filtering Based on Hadoop.COMPUTER SYSTEMS APPLICATIONS,2018,27(5):166-170
曹霞,谢颖华.基于Hadoop的协同过滤并行化算法.计算机系统应用,2018,27(5):166-170
CAO Xia,XIE Ying-Hua.Parallel Algorithm of Collaborative Filtering Based on Hadoop.COMPUTER SYSTEMS APPLICATIONS,2018,27(5):166-170