本文已被:浏览 1803次 下载 2615次
Received:September 04, 2017 Revised:September 20, 2017
Received:September 04, 2017 Revised:September 20, 2017
中文摘要: 提出了一种Gabor-LBP频域纹理特征与词包模型语义特征相结合的场景图像分类算法.利用Gabor变换得到的频域信息,及对应的LBP特征,与视觉词包模型(BOW)提取的语义特征自适应相融合,实现分类.为了验证本文算法,利用两个标准图像测试库进行比较测试,实验结果表明,本文算法在改善图像纹理表达上具有明显优势,特别是对于图像的光照、旋转、尺度都具有很好的鲁棒性.
Abstract:In this study, a scene image classification algorithm is proposed which combines Gabor-LBP frequency domain texture features and lexical model semantic features. The frequency domain information which obtained by Gabor transform, the corresponding LBP feature, and semantic features which extracted by the visual Bag Of Words (BOW) package model are fused to realize the classification. In order to verify the algorithm, we use two standard image test datasets to compare and test. The experimental results show that the proposed algorithm has obvious advantages in improving image texture expression, especially for image illumination, rotation, and scale.
keywords: scene classification Gabor-LBP bag of words SVM
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(61502385);西安市科技计划项目(CXY1509(13));西安理工大学教学研究重点项目(xjy1775)
引用文本:
史静,朱虹.多特征融合的场景图像分类算法.计算机系统应用,2018,27(5):171-175
SHI Jing,ZHU Hong.Scene Image Classification Algorithm of Fusing Multi-Feature.COMPUTER SYSTEMS APPLICATIONS,2018,27(5):171-175
史静,朱虹.多特征融合的场景图像分类算法.计算机系统应用,2018,27(5):171-175
SHI Jing,ZHU Hong.Scene Image Classification Algorithm of Fusing Multi-Feature.COMPUTER SYSTEMS APPLICATIONS,2018,27(5):171-175