###
计算机系统应用英文版:2018,27(5):171-175
本文二维码信息
码上扫一扫!
多特征融合的场景图像分类算法
(西安理工大学 自动化与信息工程学院, 西安 710048)
Scene Image Classification Algorithm of Fusing Multi-Feature
(School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1803次   下载 2615
Received:September 04, 2017    Revised:September 20, 2017
中文摘要: 提出了一种Gabor-LBP频域纹理特征与词包模型语义特征相结合的场景图像分类算法.利用Gabor变换得到的频域信息,及对应的LBP特征,与视觉词包模型(BOW)提取的语义特征自适应相融合,实现分类.为了验证本文算法,利用两个标准图像测试库进行比较测试,实验结果表明,本文算法在改善图像纹理表达上具有明显优势,特别是对于图像的光照、旋转、尺度都具有很好的鲁棒性.
中文关键词: 场景分类  Gabor-LBP  词包模型  SVM
Abstract:In this study, a scene image classification algorithm is proposed which combines Gabor-LBP frequency domain texture features and lexical model semantic features. The frequency domain information which obtained by Gabor transform, the corresponding LBP feature, and semantic features which extracted by the visual Bag Of Words (BOW) package model are fused to realize the classification. In order to verify the algorithm, we use two standard image test datasets to compare and test. The experimental results show that the proposed algorithm has obvious advantages in improving image texture expression, especially for image illumination, rotation, and scale.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61502385);西安市科技计划项目(CXY1509(13));西安理工大学教学研究重点项目(xjy1775)
引用文本:
史静,朱虹.多特征融合的场景图像分类算法.计算机系统应用,2018,27(5):171-175
SHI Jing,ZHU Hong.Scene Image Classification Algorithm of Fusing Multi-Feature.COMPUTER SYSTEMS APPLICATIONS,2018,27(5):171-175