###
计算机系统应用英文版:2018,27(4):167-172
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
光伏玻璃的缺陷显著图检测
(1.浙江理工大学, 杭州 310018;2.上海交通大学 生命科学与技术学院, 上海 200240)
Defect Saliency Detection on Photovoltaic Glasses
(1.Zhejiang Sci-Tech University, Hangzhou 310018, China;2.School of Life Science and Technology, Shanghai Jiaotong University, Shanghai 200240, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1809次   下载 2095
Received:July 24, 2017    
中文摘要: 在光伏玻璃加工生产中,常常伴随着气泡、结石等可能对生产过程造成破坏性故障的缺陷,如何可靠地检测出玻璃的缺陷显得至关重要.为了有效地从周期性纹理中分离出缺陷,引入了一种基于图像对比和图像签名的方法计算显著图.一方面利用中央-周边算子求取候选显著图,另一方面先后对原图进行离散余弦变换,图像签名方法,反离散余弦变换和高斯模糊等方法求得重构显著图,最后通过线性乘将两个显著图进行融合.实验结果显示,本算法对玻璃缺陷的提取效果明显优于其他7个显著性算法.
中文关键词: 光伏玻璃  缺陷  图像对比  图像签名
Abstract:Defects like bubble and solid inclusion may disrupt the photovoltaic manufacturing process. The reliability to detect the defect of Photovoltaic Glass is particularly important. In order to separate defects from periodic background, this study introduces a novel approach to estimate saliency using image contrast and image signature. On the one hand, candidate saliency is computed based on center-surround contrast. On the other hand, original image is firstly converted by DCT transform, then the sign operation is applied to produce the image signature and the reconstructed image is computed by IDCT transform. Later the Gaussian kernel is applied to gain the reconstructed saliency. Finally, the reconstructed saliency is used to fuse the candidate saliency. Experiment results show that the proposed method gains relatively accurate saliency regions compared to the 7 methods.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
王哲,李文书.光伏玻璃的缺陷显著图检测.计算机系统应用,2018,27(4):167-172
WANG Zhe,LI Wen-Shu.Defect Saliency Detection on Photovoltaic Glasses.COMPUTER SYSTEMS APPLICATIONS,2018,27(4):167-172