###
计算机系统应用英文版:2018,27(3):179-185
本文二维码信息
码上扫一扫!
改进SOM神经网络在电力调度故障诊断中的应用
(1.中国科学院 沈阳计算技术研究所, 沈阳 110168;2.中国科学院大学, 北京 100049;3.国家电网公司东北分部, 沈阳 110180;4.吉林大学 计算机科学与技术学院, 长春 130000)
Application of Improved SOM Neural Network in Fault Diagnosis of Electric Power Dispatching
(1.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.State Grid Corporation Northeast Division, Shenyang 110180, China;4.College of Computer Science and Technology, Jilin University, Changchun 130000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2187次   下载 2503
Received:July 04, 2017    Revised:July 20, 2017
中文摘要: 为了解决电力调度自动化系统中故障、安全监测不到位,尤其是缺少精确定位和关联分析等问题,利用改进的SOM神经网络提出了一种故障诊断模型.首先,在分析调度系统历史数据基础上,提取故障的特征向量,建立学习样本.接着通过算法训练输入和输出间的内在联系,供后续测试验证使用.最后,在已具备数据内在映射关系的网络中,测试待检测数据,验证其故障诊断的效果.最后的结果表明,此模型对不同类型故障识别和诊断能力较强,是一种行之有效的人工智能诊断方法.
Abstract:A fault diagnosis model is proposed by using improved SOM neural network for the purpose of improving fault and safety monitoring, especially when it lacks accurate positioning and correlation analysis in power dispatching automation system. Firstly, based on the analysis of the historical data of the dispatching system, the feature vector of the fault is extracted and the learning sample is established. And then the connection with input and output for the subsequent test is trained for verification through the algorithm. Finally, the experiment which tests the data and verifies the effectiveness of its fault diagnosis is in the network with the inherent mapping of the data. The final results show that this model is an effective artificial intelligence diagnosis method for different types of fault recognition and diagnosis.
文章编号:     中图分类号:    文献标志码:
基金项目:国科控股企业技术创新引导基金(2015XS0356)
引用文本:
刘兆炜,王汉军,李丹,周心圆.改进SOM神经网络在电力调度故障诊断中的应用.计算机系统应用,2018,27(3):179-185
LIU Zhao-Wei,WANG Han-Jun,LI Dan,ZHOU Xin-Yuan.Application of Improved SOM Neural Network in Fault Diagnosis of Electric Power Dispatching.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):179-185