本文已被:浏览 4144次 下载 2965次
Received:July 02, 2017 Revised:July 17, 2017
Received:July 02, 2017 Revised:July 17, 2017
中文摘要: 时间和空间是“坚强智能电网”的基础依据,使得电网运行状态和事故都与时空紧密关联.在实际电力应急通信事件中,跨域、跨网、跨时的多地区、多部分协同应急指挥和会商具有更高的实用需求.针对电力应急通信指挥系统存在的异质数据融合难和信息关联关系表征效率低的问题,本文研究了时空势大数据关联的电力应急分布式通信会商系统,设计了业务无关的动态分布式电力应急随域架构,提出了时空势大数据异质基准,设定的融合基准能够有效将不同数据转换到地理时空坐标上.制定了电力应急通信协商态势标绘元素分类基础.通过在ArcGIS和Linux上搭建的电力应急协商系统进行实验验证,本文方法能够有效提升协同响应时间和系统可视化的成功性.
Abstract:Time and space are the basis of the “strong smart grid”, which makes both the grid state and the accident closely related to them. Actually, there are more demands on emergency communication of different regions and parts. Focused on difficulties of situation fusion and weak presentation in the grid communication network, this paper proposes a distributed emergency communication system for electric power based on spatial, time, and situation fused big data. It designs an adaptive framework without relationships to services, proposes a heter-element reference for spatial and time big data. It achieves the transformation from different data into the same geo-coordinate. The classification basis of situation and plotting of grid emergency communication system is also formulated. The tests and simulations on ArcGIS and Linux demonstrate better performance in accuracy and lower data consumption.
文章编号: 中图分类号: 文献标志码:
基金项目:国家电网公司科技项目(521995150001)
Author Name | Affiliation | |
DENG Chuang | Power Emergency Center of Sichuan Electric Power Company, Chengdu 610094, China | eedeng@126.com |
Author Name | Affiliation | |
DENG Chuang | Power Emergency Center of Sichuan Electric Power Company, Chengdu 610094, China | eedeng@126.com |
引用文本:
邓创.时空势大数据关联的电力应急分布式通信会商系统.计算机系统应用,2018,27(3):77-83
DENG Chuang.Distributed Emergency Communication System for Electric Power Based on Spatial, Time, and Situation Fused Big Data.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):77-83
邓创.时空势大数据关联的电力应急分布式通信会商系统.计算机系统应用,2018,27(3):77-83
DENG Chuang.Distributed Emergency Communication System for Electric Power Based on Spatial, Time, and Situation Fused Big Data.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):77-83