###
计算机系统应用英文版:2018,27(3):118-124
本文二维码信息
码上扫一扫!
基于增强相似度和隐含信任的推荐算法
(福州大学 经济与管理学院, 350108)
Recommendation Algorithms Based on Enhanced Similarity and Implicit Trust
(School of Economics and Management, Fuzhou University, Fuzhou 350108, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2124次   下载 2460
Received:June 05, 2017    Revised:June 19, 2017
中文摘要: 针对电子商务系统中传统协同过滤算法普遍存在的稀疏性问题,提出一种基于增强相似度和隐含信任的协同过滤算法(ETCF).首先提出一种融合JMSD和用户偏好的增强相似度计算方法;然后提出一种融合交互经验的直接信任计算方法,基于直接信任和信任传播提出一种隐含信任计算方法;最后提出一种将用户的增强相似度和隐含信任进行融合的评分预测模型.Movielens和Epinions数据集下的实验表明,与基准算法相比本文方法具有更低的MAE值,更高的覆盖率,提高了推荐质量.
Abstract:Considering the sparsity of traditional collaborative filtering recommendation algorithms in electronic commerce systems, a new collaborative filtering algorithms based on enhanced similarity and implicit trust is presented. Firstly, a new method based on JMSD and user's preference to compute the similarity measure is presented. Secondly, a method to compute the direct trust fused with the interactive experience is proposed. Then, a method to compute the implicit trust based on direct trust and trust propagation is presented. Finally, this paper presents a model to compute the rating predictions based on the enhanced similarity and implicit trust. The experimental results in Movielens and Epinions show that the new algorithm improves recommendation quality in MAE and coverage.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
郑鹏,王应明.基于增强相似度和隐含信任的推荐算法.计算机系统应用,2018,27(3):118-124
ZHENG Peng,WANG Ying-Ming.Recommendation Algorithms Based on Enhanced Similarity and Implicit Trust.COMPUTER SYSTEMS APPLICATIONS,2018,27(3):118-124