本文已被:浏览 1946次 下载 2525次
Received:May 06, 2017
Received:May 06, 2017
中文摘要: Android由于其广泛的普及率使得其平台上的恶意软件数量不断增加,针对目前大部分方法采用单一特征和单一算法进行检验,准确率不高的不足,提出了一种基于多特征与Stacking算法的静态检测方法,该方法能够弥补这两方面的不足. 首先使用多种特征信息组成特征向量,并且使用Stacking集成学习算法组合Logistic,SVM,k近邻和CART决策树多个基本算法,再通过训练样本进行学习形成分类器. 实验结果表明,相对于使用单一特征和单一算法其识别准确率得到提高,可达94.05%,该分类器对测试样本拥有较好的识别性能.
中文关键词: Android 恶意软件检测 集成学习 Stacking算法 多特征
Abstract:As a result of the Android system's popularity, the number of malware on it is increasing rapidly. In this study, a static detection method based on multi-feature and Stacking algorithm is proposed, which can make up the shortcomings of the two aspects, i.e., based on single feature and single algorithm. Firstly, this study uses a variety of feature information to compose the eigenvector, and uses the ensemble learning algorithm of Stacking to combine Logistic, SVM, k-Nearest Neighbor and CART decision trees. Then, classifiers are generated through training samples. The experimental results show that the recognition accuracy is up to 94.05% compared with the single feature and single algorithm, and the classifier has better recognition performance.
文章编号: 中图分类号: 文献标志码:
基金项目:重庆大学国家级大学生创新创业计划(201610611016)
引用文本:
盛杰,刘岳,尹成语.基于多特征和Stacking算法的Android恶意软件检测方法.计算机系统应用,2018,27(2):197-201
SHENG Jie,LIU Yue,YIN Cheng-Yu.Detection Method of Android Malware Based on Multi-Feature and Stacking Algorithm.COMPUTER SYSTEMS APPLICATIONS,2018,27(2):197-201
盛杰,刘岳,尹成语.基于多特征和Stacking算法的Android恶意软件检测方法.计算机系统应用,2018,27(2):197-201
SHENG Jie,LIU Yue,YIN Cheng-Yu.Detection Method of Android Malware Based on Multi-Feature and Stacking Algorithm.COMPUTER SYSTEMS APPLICATIONS,2018,27(2):197-201