本文已被:浏览 1936次 下载 4275次
Received:March 18, 2017 Revised:April 10, 2017
Received:March 18, 2017 Revised:April 10, 2017
中文摘要: 大量的研究行为识别方法集中在检测简单的动作,如:步行,慢跑或者跳跃等;针对于打斗或者动作复杂的攻击性行为则研究较少;而这些研究在某些监控场景下非常有用,如:监狱,自助银行,商场等. 传统的暴力行为识别研究方法主要利用先验知识来手动设计特征,而本文提出了一种基于3D-CNN结构的暴力检测方法,通过三维深度神经网络直接对输入进行操作,能够很好的提取暴力行为的时空特征信息,从而进行检测. 从实验结果可以看出,本文方法能较好地识别出暴力行为,准确率要高于人工设计特征的方法.
Abstract:A large number of research behavioral methods are focused on detecting simple actions such as walking, jogging, or jumping, while less research is on violence or aggressive behavior, but these studies are useful in some surveillance scenarios, such as: Prison, self-help banks, shopping malls and so on. Traditional methods of violent behavior recognition research mainly use a priori knowledge to manually design features. In this paper a violence detection method based on 3D-CNN structure is proposed. The three-dimensional deep neural network directly manipulates on the input, which can be a good extraction of violent behavior of time and space characteristics of information. It can be seen from the experimental results that this method can identify the violent behavior better than the characteristics of hand-craft features.
文章编号: 中图分类号: 文献标志码:
基金项目:中科院先导项目课题(XDA06011203)
引用文本:
周智,朱明,Yahya Khan.基于3D-CNN的暴力行为检测.计算机系统应用,2017,26(12):207-211
ZHOU Zhi,ZHU Ming,Yahya Khan.Violence Behavior Detection Based on 3D-CNN.COMPUTER SYSTEMS APPLICATIONS,2017,26(12):207-211
周智,朱明,Yahya Khan.基于3D-CNN的暴力行为检测.计算机系统应用,2017,26(12):207-211
ZHOU Zhi,ZHU Ming,Yahya Khan.Violence Behavior Detection Based on 3D-CNN.COMPUTER SYSTEMS APPLICATIONS,2017,26(12):207-211