本文已被:浏览 1686次 下载 2702次
Received:April 09, 2017 Revised:April 26, 2017
Received:April 09, 2017 Revised:April 26, 2017
中文摘要: 随着发病率的逐年上升,糖尿病正日益成为严峻的世界健康难题,尤其是在发展中国家,其中大部分的糖尿病患者是2型糖尿病. 经过科学验证:通过及时有效的诊断,大约80%的2型糖尿病并发症能被阻止或者延缓. 基于大规模不平衡数据集,提出一种集成模型用于精准地诊断糖尿病患者. 数据集包含了中国某省从2009年到2015年数百万人的医疗记录. 实验结果证明该方法具有良好的性能,并取得了91.00%的敏感度,58.24%的F3值以及86.69%的G-mean值.
Abstract:Diabetes is becoming a more and more serious health challenge worldwide with the yearly rising prevalence, especially in developing countries, where the vast majority of diabetes are type 2 diabetes. Scientific research has proved that about 80% of type 2 diabetes complications can be prevented or delayed by timely detection. In this study, we propose an ensemble model to precisely diagnose the diabetes in a large-scale and imbalance dataset. The dataset used in our work covers millions of people from one province in China ranging from 2009 to 2015, which is highly skew. Results on the real-world dataset prove that our method is promising for diabetes diagnosis with a high sensitivity, F3 and G-mean, i.e., 91.00%, 58.24%, 86.69%, respectively.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
魏勋,蒋凡.基于大规模不平衡数据集的糖尿病诊断研究.计算机系统应用,2018,27(1):219-224
WEI Xun,JIANG Fan.Diabetes Diagnosis Research Based on Large-Scale Imbalanced Dataset.COMPUTER SYSTEMS APPLICATIONS,2018,27(1):219-224
魏勋,蒋凡.基于大规模不平衡数据集的糖尿病诊断研究.计算机系统应用,2018,27(1):219-224
WEI Xun,JIANG Fan.Diabetes Diagnosis Research Based on Large-Scale Imbalanced Dataset.COMPUTER SYSTEMS APPLICATIONS,2018,27(1):219-224