###
计算机系统应用英文版:2018,27(1):28-34
本文二维码信息
码上扫一扫!
基于情绪和兴趣的用户访问行为预测
(1.安徽工业大学 计算机科学与技术学院, 马鞍山 243032;2.安徽祥云科技有限公司, 马鞍山 243032)
User Behavior Prediction Based on Emotion and Interest
(1.College of Computer Science and Technology, Anhui University of Technology, Maanshan 243032, China;2.Anhui Xiangyun Technology Co. Ltd., Maanshan 243032, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2581次   下载 3040
Received:March 30, 2017    Revised:April 20, 2017
中文摘要: 微博用户行为预测旨在研究用户的行为习惯,本文主要从用户属性、用户兴趣和用户情绪三个方面,对影响微博用户行为的因素进行研究分析,提取影响用户行为的特征,训练预测模型. 实验中还将情感和兴趣特征在预测模型中的作用进行了对比,结果显示预测模型在转发行为预测的平均准确率能够达到82.56%,在评论行为预测的平均准确率能够达到84.59%,在点赞行为预测的平均准确率能够达到79.35%,表明了用户兴趣和情感特征对于微博用户行为预测结果提升中的有效性.
中文关键词: 用户行为  微博  情感分析  兴趣  预测
Abstract:Micro-blog user behavior prediction aims to study user behavior habits. This paper mainly studies the factors that affect the behaviors of users of microblogging from three aspects: the user attribute, user interest, and user's emotion. We extract the characteristics of the user behaviors, training and forecasting the model. The experimental results show that the average accuracy of forwarding behavior can reach 82.56% in the prediction, the average prediction accuracy of behavior in the comments reaching 84.59%, the prediction average accuracy of likes behavior rate reaching 79.35%, which indicates the effectiveness of user interest and emotion characteristics in the promotion of microblogging user behavior prediction.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61402008);安徽省高校自然科学研究重大项目(KJ2014ZD05);安徽省高校优秀青年人才支持计划;安徽省科技重大专项(16030901060)
引用文本:
秦锋,陈增,郑啸,童琨.基于情绪和兴趣的用户访问行为预测.计算机系统应用,2018,27(1):28-34
QIN Feng,CHEN Zeng,ZHENG Xiao,TONG Kun.User Behavior Prediction Based on Emotion and Interest.COMPUTER SYSTEMS APPLICATIONS,2018,27(1):28-34