###
计算机系统应用英文版:2017,26(11):199-204
本文二维码信息
码上扫一扫!
基于桥梁用户的多社交网络影响最大化
(福建师范大学 数学与计算机科学学院, 福州 350007)
Influence Maximization on Multi-Social Networks Based on Bridge Users
(College of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1364次   下载 2085
Received:March 02, 2017    Revised:March 20, 2017
中文摘要: 单社交网络影响最大化问题已经得到了学术界的广泛关注与研究,然而如今多社交网络之间呈现信息互通的趋势.多社交网络中存在的桥梁用户(Bridge User,BU)(即同时拥有多个社交网络账户的用户),可将信息从一个社交网络分享至另外一个社交网络,信息传播不再局限于单个网络.本文针对多社交网络信息影响最大化进行了相关研究,分析了桥梁用户在多社交网络信息传播中的作用,提出了基于桥梁用户的多社交网络聚合算法,并在得到的聚合图上对多社交网络影响最大化问题进行求解.仿真实验对多社交网络影响最大化问题进行了求解,并证实了桥梁用户在多社交网络信息传播时的作用.
Abstract:The influence maximization on single network has aroused widespread concerns and has become a research hotspot. However, there is a trend of information exchange between multi-social networks. The bridge user (BU), which refers to the user that has multi-accounts on multi-social networks, has the ability to share the information from one social network to another. Due to this, information spread is not limited to a single network. In this paper, we study the influence maximization on multi-social networks. We analyze the role of bridge user in multi-social networks information spread and propose a multi-social network aggregation algorithm based on bridge users, then we solve the problem of influence maximization on multi-social networks based on aggregate graph. Experiments solve the problem of influence maximization on multi-social networks and confirm the role of bridge users in the information spread on multi-social networks.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(U1405255);福建省自然科学基金(2016J01287);福建师范大学科研创新团队(IRTL1207)
引用文本:
赵佳旭,陈志德,罗坚.基于桥梁用户的多社交网络影响最大化.计算机系统应用,2017,26(11):199-204
ZHAO Jia-Xu,CHEN Zhi-De,LUO Jian.Influence Maximization on Multi-Social Networks Based on Bridge Users.COMPUTER SYSTEMS APPLICATIONS,2017,26(11):199-204