###
计算机系统应用英文版:2017,26(11):124-131
本文二维码信息
码上扫一扫!
基于改进能熵比的维纳滤波语音增强算法
(1.中国科学院大学, 北京 100049;2.中国科学院 沈阳计算技术研究所, 沈阳 110168;3.东北大学 计算机科学与工程学院, 沈阳 110819;4.国家电网公司东北分部 国网东北电力调控分中心, 沈阳 110180)
Speech Enhancement Algorithm Using Wiener Filtering Based on Improved Energy to Entropy Ratio
(1.University of Chinese Academy of Sciences, Beijing 100049, China;2.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;3.School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China;4.Northeast Branch of State Grid, Shenyang 110180, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1867次   下载 2147
Received:February 15, 2017    Revised:March 02, 2017
中文摘要: 为了提高低信噪比环境下语音增强的效果、算法的鲁棒性.在基于维纳滤波算法的基础上,结合基于频域特征的语音端点检查算法,提出了一种新的语音增强算法.端点检测算法使用小波包ERB子带的谱熵和改进的频域能量的能熵比法.其中,小波包ERB子带的谱熵考虑了人耳听觉掩蔽模型和语音与噪声信号之间的频率分布之间的不同;频域能量利用了有语音帧和无语音帧的能量不同.维纳滤波算法实时采集语音数据并使用新的参数来区别无语音段和有语音段,并在无语音段平滑更新噪声谱.实验结果表明,该端点检测算法能够很好的区分有语音段和无语音段,这就使得在低信噪比的情况下语音增强效果得到了提升,同时算法的鲁棒性和实时性也得到了保障.在与其他两种算法对比中,得到了更好的语音增强效果.
Abstract:In order to achieve the improved effectiveness of speech enhancement under low-SNR circumstance and the robustness of the algorithm, this paper puts forward a new speech enhancement algorithm which is based on wiener filtering algorithm combined with speech endpoint detection algorithm on account of frequency domain features. The endpoint detection algorithm adopts the ratio between spectrum entropy for wavelet packet ERB sub-band and energy entropy for improvement of frequency domain. Therein, the spectral entropy of wavelet packet ERB sub-band takes masking properties of human auditory and the difference between speech and noise signal frequency distribution into account; the frequency-domain energy takes advantages of the energy difference between voice-frames and non- voice-frames. In addition, the wiener filtering algorithm acquits real time data and uses the new parameters to distinguish voice segment and no-voice segment where noise spectrum is updated smoothly. At last, the experimental results demonstrate that the endpoint detection algorithm can be able to effectively distinguish between speech segments and no speech segments, leading to the improvement of speech enhancement in the case of low SNR and the guarantee of robustness as well as real-time of the algorithm. In contrast with the other two algorithms, the new approach to speech enhancement has a better effect.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
王帅,蒲宝明,李相泽,张笑东,姚恺丰.基于改进能熵比的维纳滤波语音增强算法.计算机系统应用,2017,26(11):124-131
WANG Shuai,PU Bao-Ming,LI Xiang-Ze,ZHANG Xiao-Dong,YAO Kai-Feng.Speech Enhancement Algorithm Using Wiener Filtering Based on Improved Energy to Entropy Ratio.COMPUTER SYSTEMS APPLICATIONS,2017,26(11):124-131