###
计算机系统应用英文版:2017,26(10):172-177
本文二维码信息
码上扫一扫!
基于NPCA-SOFM算法的电力物资细分模型
(1.国网临沂供电公司, 临沂 276003;2.国网山东省电力公司, 济南 250001)
Power Material Subdivision Model Based on NPCA-SOFM Algorithm
(1.State Grid Linyi Power Supply Company, Linyi 276003, China;2.State Grid Shandong Electric Power Company, Jinan 250001, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1570次   下载 2046
Received:January 12, 2017    
中文摘要: 为了有效提高电力物资细分科学性以及需求预测合理性,文章以物资需求特性为突破口,构建了基于NPCA-SOFM算法的电力物资细分模型.首先,为消除指标标准化造成的指标变异和信息丢失影响,采用非线性主成份分析法(NPCA)进行降维处理;然后,运用SOFM神经网络算法对降维后的主成份进行聚类分析;最后,通过算例分析验证文中方法的有效性,结果表明相较于PCA-SOFM和单独采用SOFM算法,NPCA-SOFM神经网络算法聚类性能更具优势,且降维效果更明显,可为电力物资集约化管理和企业运营决策提供参考意义.
Abstract:In order to improve the scientificity of power material subdivision and the rationality of demand forecasting, this paper constructs the power material subdivision model based on NPCA-SOFM algorithm with the material demand characteristic as the breakthrough point. Firstly, the non-linear principal component analysis (NPCA) is used to reduce the dimensionality of the index and the loss of information caused by the standardization of indicators. Afterwards, we use the SOFM neural network algorithm to cluster the principal components after dimension reduction. Finally, the validity of the method is verified with an example. The results show that the clustering performance of NPCA-SOFM neural network algorithm is superior to PCA-SOFM and SOFM algorithm alone, and the dimension reduction effect is more obvious, which can provide reference value for intensive management of electric material and enterprise operation decision.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(71071089);国家电网公司科技项目(520607160003)
引用文本:
牛庆松,蒋雷雷,刁柏青.基于NPCA-SOFM算法的电力物资细分模型.计算机系统应用,2017,26(10):172-177
NIU Qing-Song,JIANG Lei-Lei,DIAO Bai-Qing.Power Material Subdivision Model Based on NPCA-SOFM Algorithm.COMPUTER SYSTEMS APPLICATIONS,2017,26(10):172-177