###
计算机系统应用英文版:2017,26(8):114-120
本文二维码信息
码上扫一扫!
基于非负性约束K-SVD的fMRI盲源信号分离
(上海海事大学 信息工程学院, 上海 201306)
FMRI Blind Source Separation Based on Non-Negative Constraint K-SVD
(Information Engineering College, Shanghai Maritime University, Shanghai 201306, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1782次   下载 2208
Received:December 13, 2016    
中文摘要: 近年来,K-SVD算法在功能磁共振成像(functional magnetic resonance imaging,fMRI)数据分析方法的研究中越来越受到关注.在本文中,提出了一种新的基于非负性约束K-SVD (Non-negative K-SVD,NK-SVD)的盲源信号分离(Blind Source Separation,BSS)方法.首先,随机初始化字典矩阵,利用正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)求得稀疏向量矩阵;然后利用NK-SVD迭代更新字典矩阵和稀疏向量矩阵;进一步,对字典矩阵求伪逆,乘以原始信号数据,可得到脑功能激活区;最后,将本文的方法应用于模拟数据和真实数据,结果证明了方法的有效性,并且比传统算法有更好的效果.
中文关键词: 盲源信号分离  K-SVD  稀疏性  非负性
Abstract:In recent years, the K-SVD algorithm has gained more and more attention in the studies of functional magnetic resonance imaging (fMRI) data analysis. In this research, we propose a new method of blind source separation based on non-negative constrained K-SVD (NK-SVD). Firstly, we initialize a dictionary matrix randomly, and use orthogonal matching pursuit (OMP) to obtain a sparse vector matrix. Then, we use NK-SVD to update the dictionary matrix and sparse vector matrix. Furthermore, we solve the dictionary matrix pseudo inverse to obtain the brain functional activation areas by multiplying by the original data. Finally, we apply the proposed method to both simulated data and real fMRI data, where the correspondingly experimental results demonstrate the effectiveness of the proposed one, having better performance in comparison with the conventional algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(31470954)
引用文本:
朱凌晨,曾卫明,石玉虎.基于非负性约束K-SVD的fMRI盲源信号分离.计算机系统应用,2017,26(8):114-120
ZHU Ling-Chen,ZENG Wei-Ming,SHI Yu-Hu.FMRI Blind Source Separation Based on Non-Negative Constraint K-SVD.COMPUTER SYSTEMS APPLICATIONS,2017,26(8):114-120