###
计算机系统应用英文版:2017,26(9):145-150
本文二维码信息
码上扫一扫!
基于层次语言模型的英语动名词搭配纠错策略
(1.中国科学技术大学 现代教育技术中心, 合肥 230026;2.中国科学技术大学 苏州研究院, 苏州 235123)
English Verb-Noun Collocation Error Correction Strategy Based on Hierarchical Language Model
(1.Center of Modern Educational Technology, University of Science and Technology of China, Hefei 230026, China;2.Suzhou Institute of University of Science and Technology of China, Suzhou 235123, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1421次   下载 2102
Received:December 27, 2016    
中文摘要: 搭配的正确使用是区分地道英语使用者和普通学习者的一个重要特征.通过分析中国英语学习者语料库(CLEC),可以发现动名词搭配错误是英语学习者易犯的错误.本文提出一种可用于纠正英语学习者动名词搭配错误的层次语言模型.该语言模型考虑到了句子内部词语之间的依赖关系,将句子处理为不同的层次的子句,同一个句子内部的单词高度相关,不同子句内的单词相关性弱.该语言模型对于句子成分的变化得到的结果更加稳定,而且搭配信息得到浓缩,得到的语言模型更加精确.本文将模型用于生成分类器特征和结果排序.这种层次语言模型应用到英语动名词搭配的检错纠错中,对比传统语言模型,会有更好的效果.
Abstract:The correct use of collocation has been widely acknowledged as an essential characteristic to distinguish native English speakers from English learners. Through the analysis of CLEC, we can find that English learners often make mistakes on verb-noun collocations. In this paper, we propose a hierarchical language model that can be used to correct verb-noun collocation errors made by English learners. The language model takes the dependencies between words within a sentence into account. It parses sentences into different levels of clauses. The words within the same clause are highly correlated, and the relevance of words in different clauses is weak. The language model is more stable. Moreover, it is more accurate because collocation information is condensed. It can be used to re-rank candidates and generate classifier features. We apply this hierarchical language model to the correction of English verb-noun collocation errors. Compared with the traditional language model, the new model has better performance.
文章编号:     中图分类号:    文献标志码:
基金项目:江苏省自然科学基金面上研究项目(BK20141209);苏州市应用基础研究项目(SYG201543)
引用文本:
李灿润,吴桂兴,吴敏.基于层次语言模型的英语动名词搭配纠错策略.计算机系统应用,2017,26(9):145-150
LI Can-Run,WU Gui-Xing,WU Min.English Verb-Noun Collocation Error Correction Strategy Based on Hierarchical Language Model.COMPUTER SYSTEMS APPLICATIONS,2017,26(9):145-150