###
计算机系统应用英文版:2017,26(8):217-222
本文二维码信息
码上扫一扫!
基于EMD和BP神经网络的雷达体征信号检测算法
(1.山东建筑大学 信息与电气工程学院, 济南 250101;2.中建国际投资(青岛)有限公司, 青岛 266109)
Radar Vital Sign Detection Method Based on the EMD and BP Algorithm
(1.School of Information and Electric Engineering, Shandong Jianzhu University, Jinan 250101, China;2.China State Construction International Investments(Qingdao) Limited, Qingdao 266109, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1418次   下载 2757
Received:December 12, 2016    
中文摘要: 随着城市生活中医疗、治安、反恐等方面的需求日益突出,非接触式雷达生命体征检测逐渐得到各方面的关注.文章提出一种基于EMD和神经网络的雷达生命体征信号检测算法.由于UWB雷达回波信号的非平稳非线性特性,利用EMD的空间时间尺度特性对信号进行分解,得到一系列的本征模态函数IMF,然后通过结合了免疫遗传算法IGA的BP神经网络对信号进行优化,获得心跳和呼吸信号.结果表明,文章提出的算法比直接用EMD分解重构的信号的准确性高,弥补了EMD分解的端点效应问题,具有广阔的应用前景和研究价值.
中文关键词: UWB雷达  生命体征检测  EMD  BP神经网络
Abstract:With the increasing demand for medical treatment, public security, anti-terrorism and other aspects of urban life, the vital signs detection of non-contact radar is gradually getting the attention. In this paper, an algorithm for radar vital signs detection based on EMD and neural networks is presented. Due to the non-linear and non-stationary characteristics of UWB radar echo signal, this paper utilizes the space and time scales characteristics of the EMD to decompose the signal and obtain a series of IMF. By combining the BP and IGA neural networks, it optimizes the signal and obtains the heart and respiratory signals. The experimental results show that the proposed algorithm is more accurate than the direct EMD decomposition and reconstruction of the signal, which makes up for the end effect of EMD decomposition, and has broad application prospects and research value.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
崔丽辉,赵安兴,宁方正.基于EMD和BP神经网络的雷达体征信号检测算法.计算机系统应用,2017,26(8):217-222
CUI Li-Hui,ZHAO An-Xing,NING Fang-Zheng.Radar Vital Sign Detection Method Based on the EMD and BP Algorithm.COMPUTER SYSTEMS APPLICATIONS,2017,26(8):217-222