###
计算机系统应用英文版:2017,26(7):210-214
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于运动矢量交点密集度的人群恐慌行为检测
(1.福建师范大学 光电与信息工程学院, 福州 350007;2.福建师范大学 医学光电科学与技术教育部重点实验室, 福州 350007;3.福建师范大学 福建省先进光电传感与智能信息应用工程技术研究中心, 福州 350007)
Panic Crowd Behavior Detection Based on Intersection Density of Motion Vector
(1.College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China;2.Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China;3.Fujian Provincial Engineering Research Center for Optoelectronic Sensors and Intelligent Information, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1271次   下载 1876
Received:October 31, 2016    Revised:January 04, 2017
中文摘要: 为了更准确有效的识别人群恐慌行为,本文提出了一种利用视频中人群运动矢量的交点密集度来判断人群恐慌异常的新算法.该算法以LK光流法为基础来提取运动人群的运动矢量信息,接着通过获得的信息求取运动矢量间的两两交叉点,然后运用分块法求得区域交叉点密集度,并以此来识别人群异常.对多个视频进行测试,测试结果表明:该算法能够以较高正确率识别视频中人群的恐慌行为.
Abstract:In order to identify the panic crowd behavior with a more accurate and effective method, a new scheme is proposed which can utilize the intersection density of motion vector in the video to judge the abnormal panic crowd behavior. This algorithm is based on LK optical flow to extract information of motion vector from moving people, and to obtain the intersection between two motion vectors, then uses divided image blocks to get the intersection density which is the key to identify abnormal crowd. Experiments on several datasets show that this algorithm can identify the panic crowd behavior with high accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:省科技厅区域科技重大项目(2015H4007)
引用文本:
钟帅,蔡坚勇,廖晓东,黄澎,张炜隽.基于运动矢量交点密集度的人群恐慌行为检测.计算机系统应用,2017,26(7):210-214
ZHONG Shuai,CAI Jian-Yong,LIAO Xiao-Dong,HUANG Peng,ZHANG Wei-Jun.Panic Crowd Behavior Detection Based on Intersection Density of Motion Vector.COMPUTER SYSTEMS APPLICATIONS,2017,26(7):210-214