###
计算机系统应用英文版:2017,26(4):124-129
本文二维码信息
码上扫一扫!
基于Spark的矩阵分解与最近邻融合的推荐算法
(1.贵州大学 计算机科学与技术学院, 贵阳 550025;2.贵州省公共大数据重点实验室, 贵阳 550025)
Recommendation Algorithm Using Matrix Decomposition and Nearest Neighbor Fusion Based on Spark
(1.School of Computer Science and Technology, Guizhou University, Guiyang 550025, China;2.Guizhou Provincial Key Laboratory of Public Big Data, Guiyang 550025, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1286次   下载 2153
Received:August 15, 2016    Revised:September 27, 2016
中文摘要: 随着当前移动互联网的快速发展,人们所面临的信息过载问题变得尤为严重,大数据场景下对特定用户的个性化推荐面临着巨大挑战. 为了进一步提高推荐的时效性、准确度以及缓解面临的大数据量. 提出了一种矩阵分解推荐算法在大数据环境下的优化算法模型. 该模型通过在传统矩阵分解推荐算法的基础上融合了用户以及物品的相似性计算,在训练目标函数的过程中,即融入用户以及物品的前k个最近邻居的相似性计算,增强了算法的推荐准确度. 利用Spark在内存计算以及迭代计算上的优势,设计了一种Spark框架下的矩阵分解与最近邻融合的推荐算法. 通过在经典数据集—MovieLens数据集上的实验结果表明,该算法与传统的矩阵分解推荐算法相比,可以很好的缓解数据稀疏性,提高推荐算法的准确度,并且在计算效率方面也优于现有的矩阵分解推荐算法.
Abstract:With the current rapid development of mobile Internet, the information overload problem that people face is particularly serious, which makes it a big challenge to do particular users' personalized recommendation in the big data scenario. In order to further improve the timeliness, accuracy of recommendation and ease the problem led by large amount of data, we propose a optimized matrix decomposition recommendation algorithm under the environment of big data in this paper. This algorithm integrates users and the similarity computation of items on the basis of the traditional matrix decomposition algorithm. In the process of training objective function, we enhance the recommendation accuracy by taking in account of users and k nearest neighbors' similarity computation of items. Taking Spark's advantage on memory computing and iterative computing, we design an algorithm using matrix decomposition and nearest neighbor fusion under the Spark framework. Experiments conducted on the classical MovieLens dataset show that our proposed algorithm can deal with data sparseness well, improve recommendation accuracy to some extent, and has a better computational efficiency in the comparison with traditional matrix decomposition recommendation algorithms.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61462011,61202089);高等学校博士学科专项科研基金(20125201120006);贵州大学引进人才科研项目(2011015);贵州省应用基础研究计划重大项目(黔科合JZ字[2014]2001-01)
引用文本:
王振军,黄瑞章.基于Spark的矩阵分解与最近邻融合的推荐算法.计算机系统应用,2017,26(4):124-129
WANG Zhen-Jun,HUANG Rui-Zhang.Recommendation Algorithm Using Matrix Decomposition and Nearest Neighbor Fusion Based on Spark.COMPUTER SYSTEMS APPLICATIONS,2017,26(4):124-129