###
计算机系统应用英文版:2017,26(3):271-274
本文二维码信息
码上扫一扫!
基于径向基过程神经网络的储层岩性识别
(1.东北石油大学计算机与信息技术学院, 大庆 163318;2.山东科技大学信息科学与工程学院, 青岛 266590)
Lithology Identification Based on Radial Basis Process Neural Network
(1.Institute of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China;2.College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1100次   下载 1728
Received:June 28, 2016    Revised:July 27, 2016
中文摘要: 识别并评价油气储层是油田勘探开发工作中至关重要的部分,而目前现有的岩性识别方法一般不能表述地层的非均质性,也没有考虑到地层参数随着深度而变化所产生的影响.本文提出一种基于径向基过程神经网络的岩性识别模型,并用实际数据进行了验证.实验结果表明,所提出的方法有着较高的识别率,是一种可以实际应用的方法.
Abstract:Identification and evaluation of oil and gas reservoirs is an essential part in the work of oil exploration and development. Generally speaking, the existing lithology identification methods can't be expressed in formation heterogeneity, the impact of layer parameters varies with depth arising is not taken into account. This paper presents a model of lithologic identification based on radial basis process neural network, which is verified by the actual data. The experimental result shows that the proposed method has a high recognition rate, and it is a practical application method.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
秦研博,许少华.基于径向基过程神经网络的储层岩性识别.计算机系统应用,2017,26(3):271-274
QIN Yan-Bo,XU Shao-Hua.Lithology Identification Based on Radial Basis Process Neural Network.COMPUTER SYSTEMS APPLICATIONS,2017,26(3):271-274