本文已被:浏览 1281次 下载 2086次
Received:May 17, 2016 Revised:June 27, 2016
Received:May 17, 2016 Revised:June 27, 2016
中文摘要: 在基于语音识别的智能家居中,用于训练的语料库不完备且应用场景复杂,自然语言语音识别错误接受率远远高于小词汇的语音识别的错误接受率.作者在设计与实现基于自然语言的语音识别智能家居系统的过程中,深入研究了MAP、MLLR算法在基于HMM声学模型参数中的作用,提出了一种综合的自适应方法,并基于开源的语音识别工具CMU SPHIN最终完整的实现了该系统,结果表明所提出的自适应新算法可行有效,较好改善了系统在不同场景中的性能.
Abstract:In smart home based on speech recognition, the corpus used for training is not complete and the application scenario is complex. Besides, the false acceptance rate of natural language speech recognition is much higher than that of small vocabulary speech recognition. During the procedure of designing and trying to implement smart home system based on natural language speech recognition, the author makes an intensive study of the MAP, MLLR algorithm based on the role of HMM acoustic model parameters. This paper presents a comprehensive adaptive method, based on which the author completed the system by using open source tools CMU SPHIN. The experiment result shows that the presented new adaptive algorithm is feasible and effective, and makes the system performance better in different scenarios.
keywords: speech recognition adaption MAP MLLR smart home open-source tools
文章编号: 中图分类号: 文献标志码:
基金项目:2014年国家物联网发展专项资金项目(工信部科函[2014]351号)
引用文本:
蒋泰,张林军.语音识别自适应算法在智能家居中的应用.计算机系统应用,2017,26(3):150-155
JIANG Tai,ZHANG Lin-Jun.Speech Recognition Adaptive Algorithm in the Application of the Smart Home.COMPUTER SYSTEMS APPLICATIONS,2017,26(3):150-155
蒋泰,张林军.语音识别自适应算法在智能家居中的应用.计算机系统应用,2017,26(3):150-155
JIANG Tai,ZHANG Lin-Jun.Speech Recognition Adaptive Algorithm in the Application of the Smart Home.COMPUTER SYSTEMS APPLICATIONS,2017,26(3):150-155