###
计算机系统应用英文版:2017,26(3):30-36
本文二维码信息
码上扫一扫!
基于无迹卡尔曼滤波器的改进SLAM问题求解方法
(中国科学技术大学 信息科学技术学院, 合肥 230027)
Improved Solution Based on Unscented Kalman Filter in the SLAM
(School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1644次   下载 2642
Received:June 18, 2016    Revised:August 08, 2016
中文摘要: 目前在即时定位与地图构建(Simultaneous Localization And Mapping,SLAM)的研究中已经使用局部取样策略来降低无迹卡尔曼滤波(Unscented Kalman Filter,UKF)的计算复杂度至状态向量维数的平方等级.但是在大规模的SLAM中平方复杂度仍然难以满足实时性需求.为了解决这个问题,提出了一种收缩无迹卡尔曼滤波器(Shrink Unscented Kalman Filter,S-UKF),并应用于SLAM问题中.首先证明了解耦非线性系统中的部分取样策略和全取样策略的等价性.然后提出了一个通过重构公式中相关项的收缩方式来降低计算复杂度.最后,仿真实验的结果和基于真实环境数据集的实验结果证明了该方法的有效性.
Abstract:A partial sampling strategy was recently proposed to make the computational complexity of the unscented Kalman filter (UKF) quadratic with the state-vector dimension. However, the quadratic complexity remains a thorny issue in the large SLAM. To solve this problem, this paper presents a filtering solution for the SLAM problem called shrink unscented Kalman filter (S-UKF). It firstly proves that equivalence of the whole and partial sampling strategy for the decoupled nonlinear systems. Then a shrink form is presented by reconstruction the cross-correlation items to reduce the computational complexity. Finally, the simulation results and experimental results based on real environmental data sets validate the effectiveness of this method.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
吴勇,关胜晓.基于无迹卡尔曼滤波器的改进SLAM问题求解方法.计算机系统应用,2017,26(3):30-36
WU Yong,GUAN Sheng-Xiao.Improved Solution Based on Unscented Kalman Filter in the SLAM.COMPUTER SYSTEMS APPLICATIONS,2017,26(3):30-36