本文已被:浏览 1802次 下载 2858次
Received:July 13, 2016 Revised:September 05, 2016
Received:July 13, 2016 Revised:September 05, 2016
中文摘要: 目前,对于人物识别的研究依然是一个非常具有挑战性的难题,结合多姿势来进行人物识别则是一个新的课题,因此准确提取多姿势样本是人物识别关键的一步.Poselets算法可以检测出图像中的所有人物及其相应的姿势,但是无法对特定位置的人物进行定位.因此本文提出了一种基于poselets的特定位置人物姿势提取的方法:首先根据特定位置人物头部标定框设置过滤模型,通过过滤模型对图像中由poselets算法检出的人物框进行筛选,并对筛选结果进行排序,然后结合排序得分利用二分图最大权值匹配算法对筛选结果进行匹配,找到特定位置的目标人物,提取对应的姿势.实验表明,本文算法能有效精确的检测特定位置的人物,并提取出相应的人物姿势.
Abstract:At present, the study on people recognition is still a quite challenging problem, and it is a new subject to combine with multi-pose for person recognition. Therefore, it is a significant step for people recognition to capture multi-pose samples accurately. Poselets can detect all the people and the corresponding position in the image, but it cannot locate the people on a particular location. Therefore, this paper presents a method of pose extraction which based on poselets for the specific location:First, we should set filtering model according to the head calibration form of the human in specific location, and then using the filtering model, we can screen the figure box detected by the poselets algorithm and sort the results of the screening. Then, we can find the target person of the specific location by combining the sorting score with the maximum weight bipartite graph matching algorithm. Finally, it is easy to extract the corresponding pose. Experimental results show that the algorithm mentioned in this paper can detect the person of the specific location effectively and extract the corresponding pose.
文章编号: 中图分类号: 文献标志码:
基金项目:福建省科技厅项目(2013J01186,JK2010056);福建省教育厅项目(JB10160)
引用文本:
王维兰,刘秉瀚.基于poselets的特定位置人物多姿势提取.计算机系统应用,2017,26(2):163-167
WANG Wei-Lan,LIU Bing-Han.Multi-Pose Extraction of Person in Specific Location Based on Poselets.COMPUTER SYSTEMS APPLICATIONS,2017,26(2):163-167
王维兰,刘秉瀚.基于poselets的特定位置人物多姿势提取.计算机系统应用,2017,26(2):163-167
WANG Wei-Lan,LIU Bing-Han.Multi-Pose Extraction of Person in Specific Location Based on Poselets.COMPUTER SYSTEMS APPLICATIONS,2017,26(2):163-167