###
计算机系统应用英文版:2017,26(2):9-17
本文二维码信息
码上扫一扫!
果蝇优化算法的分析
(兰州交通大学 电子与信息工程学院, 兰州 730070)
Analysis on Fruit Fly Optimization Algorithm
(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2079次   下载 4954
Received:May 25, 2016    Revised:June 30, 2016
中文摘要: 本文针对果蝇优化算法FOA由于参数选取不合理而导致运行时间长或陷入局部最值的问题,研究了果蝇优化算法主要参数对算法运行时间、优化性能和收敛速度的影响.以FOA全局寻优6个标准测试函数最小值为例,在不同的参数配置下,进行仿真实验,对比分析研究得出果蝇优化算法各主要参数对算法性能影响的定性结论,并给出了各参数恰当的合理取值区间,以便在算法性能和运行时间之间找到最好的平衡.试验结果表明,参数的合理设置,不但缩短了算法的运行时间,而且使算法具有较快的收敛速度和较高的收敛精度.
Abstract:In order to overcome the demerits of Fruit Fly Optimization Algorithm(FOA), such as long running time and easily relapsing into local optimum, which are caused by improper parameters setting, this paper mainly researches how the main parameters of FOA influence the following aspects:running time, optimization performance and convergence velocity. Taking six standard testing functions optimization as an example, we make the simulation experiments of FOA under the different parameters. Firstly, qualitative conclusions of influence of important parameters on FOA's performance are drawn by comparative analysis and study. And then the reasonable value ranges of the parameters are given in order to get a better balance between FOA's performance and its running time. Experimental results show that reasonable parameters settings not only shorten FOA's running time, but also speed up its convergence velocity and improve its optimization precision.
文章编号:     中图分类号:    文献标志码:
基金项目:甘肃省自然科学基金(1506RJYA006);兰州市科技局计划项目(214162);甘肃省教育厅基金项目(42015268)
引用文本:
韩虎.果蝇优化算法的分析.计算机系统应用,2017,26(2):9-17
HAN Hu.Analysis on Fruit Fly Optimization Algorithm.COMPUTER SYSTEMS APPLICATIONS,2017,26(2):9-17