###
计算机系统应用英文版:2017,26(1):236-239
本文二维码信息
码上扫一扫!
基于BP神经网络的停车诱导泊位预测
(南京理工大学泰州科技学院 计算机科学与技术系, 泰州 225300)
Prediction of Parking Guidance Space Based on BP Neural Networks
(Department of Computer Science and Technology, Taizhou Institute of Sci.&Tech., Nanjing University of Science and Technology, Taizhou 225300, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1711次   下载 3021
Received:April 18, 2016    Revised:May 19, 2016
中文摘要: 研究了从历史停车数据中挖掘知识并预测短时段内停车泊位数问题.分析了停车诱导系统中影响停车泊位数的因素,结合时间序列确定网络的输入变量,建立BP神经网络,在不同训练阶段采用自适应调整学习速率,以及增加动量项改善网络的收敛性,运用Matlab对采集的市区大型地下停车场真实数据进行仿真实验与分析,取得良好预测效果.结果表明该方法与传统时间序列预测方法相比,在预测的精度方面有较大程度提高.
中文关键词: BP神经网络  停车诱导  泊位  Matlab
Abstract:The problem of excavating knowledge from historical parking data and forecasting the number of parking spaces in a short period is studied.By analyzing the factors that affect parking space, we establish a BP neural network in which the network input variables are defined through the combination of time series.Then, a self-adaptive studying rate is used in different stage of training and the momentum terms are added to improve the convergence of the network.According to the real data collected from a large underground parking in town, the simulation and analysis are executed based on Matlab, which results in well-accepted prediction effect.The conclusion shows that the proposed method can improve the prediction accuracy compared with the traditional time series prediction method.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61373012);泰州市社会发展项目(TSD201538,TS031)
引用文本:
高广银,丁勇,姜枫,李丛.基于BP神经网络的停车诱导泊位预测.计算机系统应用,2017,26(1):236-239
GAO Guang-Yin,DING Yong,JIANG Feng,LI Cong.Prediction of Parking Guidance Space Based on BP Neural Networks.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):236-239