本文已被:浏览 1209次 下载 2230次
Received:April 22, 2016 Revised:June 12, 2016
Received:April 22, 2016 Revised:June 12, 2016
中文摘要: 在使用智能优化算法处理函数优化问题时,保持种群的多样性及加快种群的收敛速度可以提升一个算法的性能.针对混合蛙跳算法在寻优过程中易陷入局部最优和早熟收敛的缺点,本文提出了一种新颖的差分混合蛙跳算法.该算法借鉴差分进化中的变异交叉思想,在前期利用子群中其他个体的有用信息来更新最差个体,增加局部扰动性,以提高种群的多样性;在后期为加快收敛速度使用最好个体的信息进行变异交叉操作.同时本文使用归档集进一步保留种群的多样性.仿真测试结果表明:该算法在求解优化问题时较基本蛙跳算法和平均值蛙跳算法具有更好的寻优性能.
Abstract:When using optimization algorithms to solve optimization problems, keeping the diversity of population and accelerating the convergence rate of the population can improve the performance of an algorithm.To overcome the main drawbacks of the shuffled frog leaping algorithm which may be easy to get stuck and premature convergence in a local optimal solution, this paper proposes a novel differential shuffled frog leaping algorithm.The algorithm is based on the idea of mutation crossover in differential evolution.In the earlier, it uses beneficial information of the other individuals in sub-group to update the worst individual, which increases the local disturbance and the diversity of population;in the later, the algorithm uses the best individual information to conduct the mutation and cross operation for speeding up the convergence rate of the population.Moreover, this paper uses the archive to keep the diversity of population.The experimental results show that the proposed algorithm is superior to the basic frog leaping algorithm and the average frog leaping algorithm in solving optimization problems.
文章编号: 中图分类号: 文献标志码:
基金项目:广东省科技计划(2013B051000075)
引用文本:
王娜,高学军.一种新颖的差分混合蛙跳算法.计算机系统应用,2017,26(1):196-200
WANG Na,GAO Xue-Jun.Novel Differential Shuffled Frog Leaping Algorithm.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):196-200
王娜,高学军.一种新颖的差分混合蛙跳算法.计算机系统应用,2017,26(1):196-200
WANG Na,GAO Xue-Jun.Novel Differential Shuffled Frog Leaping Algorithm.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):196-200