###
计算机系统应用英文版:2017,26(1):168-174
本文二维码信息
码上扫一扫!
改进的基于深度卷积网的图像匹配算法
(南京理工大学 计算机科学与工程学院, 南京 210094)
Improved Image Matching Algorithm Based on Deep Convolution Network
(School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1553次   下载 2252
Received:April 12, 2016    Revised:May 30, 2016
中文摘要: 鉴于图像匹配中单一特征难以获得理想效果的问题,提出一种改进的基于深度卷积网的图像匹配算法.首先对卷积层作展开,利用BLAS (Basic Linear Algebra Subprograms)高效地计算矩阵乘法,从而提高了算法运行速度;然后通过基于POEM (Pattern of Oriented Edge Magnitudes)特征的匹配点筛选方法,去除部分误匹配点,增强了基础矩阵的鲁棒性.实际图像的实验验证了改进算法的准确性和实时性,对于重复纹理及旋转图像的匹配效果显著.
Abstract:In view of the difficulty of obtaining the ideal effect by the single feature in image matching, an improved image matching algorithm based on deep convolution network is proposed.First of all, the algorithm expands the convolution layers, and efficiently computes the matrix multiplication by using the BLAS (Basic Linear Algebra Subprograms) libraries.The algorithm can accelerate the running speed.Then, a screening method of matching points based on the POEM (Pattern of Oriented Edge Magnitudes) feature similarity of feature points is used as well.The method can remove some wrong matching points, make the estimated fundamental matrix more robust and improve the repeating texture and rotational image.The accuracy and instantaneity of the algorithm are proved by the experimental results.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61373063)
引用文本:
雷鸣,刘传才.改进的基于深度卷积网的图像匹配算法.计算机系统应用,2017,26(1):168-174
LEI Ming,LIU Chuan-Cai.Improved Image Matching Algorithm Based on Deep Convolution Network.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):168-174