本文已被:浏览 1127次 下载 1901次
Received:April 09, 2016 Revised:May 26, 2016
Received:April 09, 2016 Revised:May 26, 2016
中文摘要: 一个图像集由大量变化不一的图像组成,而且这些图像都表示同一个人.现实中的图像集数据是非线性的,造成这些现象的因素有人脸的角度不同、光线的明暗等,因此图像集中的每幅图像都是变化的,如果近似的将一个图像集建模为线性子空间,而忽略了集合中数据结构的变化,很显然是不合理的,这也必然会影响到最后的识别率.受流形理论知识的启发,可以将图像集建模为一个流形,这与传统的将图像集建模为子空间的方法有着本质区别.本文在基于流形的人脸图像集识别方法的基础上进行改进,提出新的计算样子空间距离方法,最后采用所有最短子空间距离的平均值作为流形之间的距离,称为改进的多流形方法(Improved multi-manifold method,IMM).IMM方法在CMU PIE数据库上进行实验,结果表明该方法相比其他方法具有更高识别率.
Abstract:An image set consists of a large number of different images, and these images represent the same person.In the real life, the dates of image sets are nonlinear due to the variation from viewpoint, emotion and illumination.Inspired by the manifold theory knowledge, we assume that modeling each image set as a manifold will be more efficient compared with the traditional method of modeling an image set as a subspace intrinsically.Because the images in an image set are different from each other, it is unreasonable to model an image set as a linear subspace without ignoring the data structure in the set, which may decrease the recognition rate ultimately.In the paper, we introduce a method of improved multi-manifold based face recognition for image sets, and propose a new method for computing the distance between two subspaces.In addition, in order to get the minimal manifold distance, we choose the mean value of closest pair of subspaces as the manifold distance.We call this new method, an improved multi-manifold (IMM).Experimental results on the public available face databases, CMU PIE, demonstrate that the new method outperforms the competing methods
keywords: image set manifold linear subspace principal angles
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
李文媛,于威威,张燕.基于改进的多流形算法的人脸图像集识别.计算机系统应用,2017,26(1):129-134
LI Wen-Yuan,YU Wei-Wei,ZHANG Yan.Improved Multi-Manifold-Based Method for Face Image Set Recognition.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):129-134
李文媛,于威威,张燕.基于改进的多流形算法的人脸图像集识别.计算机系统应用,2017,26(1):129-134
LI Wen-Yuan,YU Wei-Wei,ZHANG Yan.Improved Multi-Manifold-Based Method for Face Image Set Recognition.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):129-134