###
计算机系统应用英文版:2017,26(1):101-105
本文二维码信息
码上扫一扫!
基于实时技术的大气颗粒物在线分析系统
(1.中国科学院大学, 北京 100049;2.中国科学院 沈阳计算技术研究所, 沈阳 110168;3.大连理工大学 软件学院, 大连 116024)
Atmospheric Particle Online Analysis System Based on Real-Time Technology
(1.University of Chinese Academy of Sciences, Beijing 100049, China;2.Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China;3.School of Software Technology, Dalian University of Technology, Dalian 116024, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1446次   下载 2743
Received:April 26, 2016    Revised:June 21, 2016
中文摘要: 针对环境监测中,难以实时在线处理海量颗粒物数据的问题,提出了一种基于实时技术的大气颗粒物在线分析系统,实现了颗粒物统计、浓度变化、来源解析等功能.该系统利用实时数据库来实时采集、存储海量大气数据,解决了环境监测中数据的海量问题;同时,引入自适应共振神经网络算法和逻辑回归模型进行数据分析,成功降低数据规模,提升数据分析速度.实践表明,该在线分析系统能在合理时间内得到准确的分析结果,具有重要的实际意义.
Abstract:For environmental monitoring, the existing online analysis system is difficult to deal with massive atmospheric particle data.In this paper, we propose an atmospheric particle online analysis system based on real-time technologies, which aims to achieve atmospheric particle statistics, concentration change and the source analysis.The system adopts real-time databases to realize real-time capturing, stores massive atmospheric particle data, and solves the massive data problem in environmental monitoring.Besides, to accelerate data analysis and reduce data scale, the system adopts the ART-2a neural network algorithm and logistic regression model.The experiment results prove that the online analysis system could get accurate analysis result within a reasonable time.Besides, the experiment demonstrates the practical significance of our system.
文章编号:     中图分类号:    文献标志码:
基金项目:国家水体污染控制与治理科技重大专项(2012ZX07505003)
引用文本:
潘争光,赵奎,王鸿亮,王俊霖.基于实时技术的大气颗粒物在线分析系统.计算机系统应用,2017,26(1):101-105
PAN Zheng-Guang,ZHAO Kui,WANG Hong-Liang,WANG Jun-Lin.Atmospheric Particle Online Analysis System Based on Real-Time Technology.COMPUTER SYSTEMS APPLICATIONS,2017,26(1):101-105