###
计算机系统应用英文版:2016,25(12):199-203
本文二维码信息
码上扫一扫!
基于改进差分进化算法的多阈值图像分割
(福州大学 数学与计算机科学学院, 福州 350108)
Multi-Threshold Image Segmentation Method Based on Improved Differential Evolution Algorithm
(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1066次   下载 2360
Received:March 30, 2016    Revised:June 21, 2016
中文摘要: 阈值法是一种简单有效的图像分割技术.但是阈值法也有着明显的缺点,即阈值求解的计算量随阈值的增加而指数级增长.为克服多阈值图像分割计算量大、运算时间长的缺点,引入改进的差分进化算法,提出新的变异策略,采用自适应的缩放因子和交叉系数,并新增扰动策略.改进的算法将多阈值分割模型视为优化问题,将最大类间方差法作为目标函数,实现多阈值分割.实验结果表明,和其它算法相比,该算法不仅可以取得正确的分割结果,而且分割速度更快.
Abstract:The threshold method is a simple and effective image segmentation technique.However,the threshold method also has obvious disadvantage,the amount of calculation for solving threshold appears to be exponential amplification with the increase of threshold.In order to overcome the shortcomings of large computation load and long computation time for multi-threshold image segmentation,we introduce an improved differential evolution algorithm,which proposes a new mutation strategy,adopts self-adaption scaling factor and cross factor,and newly adds Perturbation strategy.In order to achieve multi-threshold segmentation,the improved algorithm considers multi-threshold segmentation as an optimization problem whose objective function is formulated according to Otsu.Experimental results show that compared with other algorithms,the improved algorithm not only can achieve an accurate image segmentation result,but also has a faster speed.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省科技厅项目(2013J01186,JK2010056);福建省教育厅项目(JB10160)
引用文本:
杨兆龙,刘秉瀚.基于改进差分进化算法的多阈值图像分割.计算机系统应用,2016,25(12):199-203
YANG Zhao-Long,LIU Bing-Han.Multi-Threshold Image Segmentation Method Based on Improved Differential Evolution Algorithm.COMPUTER SYSTEMS APPLICATIONS,2016,25(12):199-203