本文已被:浏览 1535次 下载 3191次
Received:March 21, 2016 Revised:April 24, 2016
Received:March 21, 2016 Revised:April 24, 2016
中文摘要: 针对当前医生在临床诊疗过程中缺乏系统有效的手段,以及隐藏在大量电子病历中的医学知识没有得到充分利用的现状,研究了利用可视分析和数据挖掘相结合的方法,辅助医生进行临床诊疗服务.本文以不明原因发热疾病为例,首先对电子病历进行数据预处理和结构化提取,然后结合具体需求进行可视组织与分析,再利用数据挖掘相关算法对患者大量症状和发热原因之间的关系进行学习,帮助医生发现病历中潜在的医疗知识,辅助医生进行诊断.在上述工作的基础上,构建了一个面向临床诊疗的可视分析与辅助诊断框架,并给出了系统实例加以验证,结果表明该系统可以有效的帮助医生分析不明原因发热电子病历内的知识,有利于进一步的疾病诊断,缩短了平均确诊时间.
Abstract:To help doctors better diagnose diseases,overcome the lack of systematic and effective means in the process of clinical diagnosis and treatment and make the best of the medical knowledge in electronic medical records,a diagnosis model is proposed based on visual analysis and data mining for electronic medical record.Firstly,electronic medical records of fever of unknown origin are preprocessed into structured data by extracting patients'symptoms.Secondly,the structured data is organized and visualized based on specific requirements.Finally,a diagnosis model is trained to discover the relationship between symptoms and causes,helping doctors find the potential medical knowledge in medical records and assisting doctors to diagnose.A visual analysis and auxiliary diagnosis framework for clinical diagnosis and treatment is designed based on the above analysis.Experiments show that the system could help doctors analyze the knowledge of electronic medical records of unknown cause,which could help doctors diagnose diseases in a shorter period of time.
文章编号: 中图分类号: 文献标志码:
基金项目:北京协和医院杰出青年基金项目(JQ201509);国家高技术研究发展计划(863)(2012AA02A608);国家自然科学基金(U1304611)
引用文本:
商金秋,朱卫国,樊银亭,李伟亨,马翠霞,滕东兴.基于电子病历可视分析的临床诊断模型.计算机系统应用,2016,25(12):100-107
SHANG Jin-Qiu,ZHU Wei-Guo,FAN Yin-Ting,LI Wei-Heng,MA Cui-Xia,TENG Dong-Xing.Clinical Diagnosis Model Based on Visual Analysis for Electronic Medical Record.COMPUTER SYSTEMS APPLICATIONS,2016,25(12):100-107
商金秋,朱卫国,樊银亭,李伟亨,马翠霞,滕东兴.基于电子病历可视分析的临床诊断模型.计算机系统应用,2016,25(12):100-107
SHANG Jin-Qiu,ZHU Wei-Guo,FAN Yin-Ting,LI Wei-Heng,MA Cui-Xia,TENG Dong-Xing.Clinical Diagnosis Model Based on Visual Analysis for Electronic Medical Record.COMPUTER SYSTEMS APPLICATIONS,2016,25(12):100-107