本文已被:浏览 1164次 下载 2247次
Received:March 05, 2016 Revised:April 18, 2016
Received:March 05, 2016 Revised:April 18, 2016
中文摘要: 基于自适应动态规划(ADP)执行-评价结构,应用神经网络(NN)对非线性系统进行最优控制求解.首先提出所求解非线性系统的一般形式;其次给定二次正定性能指标,求其哈密尔顿函(HJB)函数;分别应用神经网络对执行-评价结构中的性能指标和最优控制进行逼近,神经网络权重参数应用梯度法求得,从而可以求得其最有控制策略.而且对执行机构和评价机构神经网络权重参数的收敛性以及系统总体的稳定性进行了详细的分析,证明所求控制策略可以使系统稳定;最后,用仿真结果来验证所提出的方法的可行性.
Abstract:This paper solves the regulation optimal control problem for nonlinear systems based on the adaptive dynamic programinf(ADP) and neural networks(NNs). Firstly, we propose the regulation nonlinear system; afterwards, the cost function and its Hamilton-Jacobi-Bellman(HJB) function were given; furthermore, an actor-critic frame structure was put forward to get the optimal control, and the neural network algorithms were utilized to approximate the performance index and the optimal control ofactor-critic structures respectively. The NN weights are estimated by gradient algorithms, so that the optimal control is obtained. Simultaneously, the stability of the whole system and the convergences of actor-critic NN weights are proved based on the Lyapunov theory. Finally, the simulation results are provided to verify the effectiveness of the proposed methods.
keywords: nonlinear system approximate dynamic program (ADP) gradient algrothim Lyapunov Hamilton-Jacobi-Bellman(HJB)
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
缪应锋,姚庆华,李智雄,宋晓轩.基于梯度估计的非线性系统最优控制及仿真.计算机系统应用,2016,25(11):260-264
MIAO Ying-Feng,YAO Qing-Hua,LI Zhi-Xiong,SONH Xiao-Xuan.Optimal Control and Simulation of Nonlinear Systems Based on Gradient Estimation.COMPUTER SYSTEMS APPLICATIONS,2016,25(11):260-264
缪应锋,姚庆华,李智雄,宋晓轩.基于梯度估计的非线性系统最优控制及仿真.计算机系统应用,2016,25(11):260-264
MIAO Ying-Feng,YAO Qing-Hua,LI Zhi-Xiong,SONH Xiao-Xuan.Optimal Control and Simulation of Nonlinear Systems Based on Gradient Estimation.COMPUTER SYSTEMS APPLICATIONS,2016,25(11):260-264