本文已被:浏览 1419次 下载 1742次
Received:February 27, 2016 Revised:March 31, 2016
Received:February 27, 2016 Revised:March 31, 2016
中文摘要: R树是一个高度平衡树,也是目前应用最为广泛的空间索引结构.本文以用户行为的历史数据之间的相似度构造R树,提出一种基于R树的协同过滤推荐算法(R_CF);另外,从用户的隐式反馈着手,构建用户兴趣行为数据模型,并进行数据标准化处理.仿真实验表明:较之传统的协同过滤推荐算法(CF),本文提出的R_CF算法可以极大提升推荐top-n个相似度最高的用户时的查询速度.
中文关键词: R树 协同过滤推荐算法 隐式反馈 用户兴趣行为数据模型
Abstract:The R-tree is a highly balanced tree, and is the most widely used spatial index structure. Based on the similarity of the historical data, this paper constructs R-tree, and proposes a collaborative filtering recommendation algorithm based on R-tree (R_CF). In addition, this paper sets about from the user's implicit feedback, builds the user interest behavior data model, and standardizes data. Simulation experiments show that compared with the traditional collaborative filtering recommendation algorithm (CF), the proposed R_CF algorithm can greatly improve recommended top-n query speed.
keywords: R-tree collaborative filtering recommendation algorithm implicit feedback user interest behavior data model
文章编号: 中图分类号: 文献标志码:
基金项目:辽宁省教育厅科学技术研究一般项目(L2014451)
引用文本:
张龙昌,张洪锐.基于R树的协同过滤推荐算法.计算机系统应用,2016,25(11):131-135
ZHANG Long-Chang,ZHANG Hong-Rui.Collaborative Filtering Recommendation Algorithm Based on R Tree.COMPUTER SYSTEMS APPLICATIONS,2016,25(11):131-135
张龙昌,张洪锐.基于R树的协同过滤推荐算法.计算机系统应用,2016,25(11):131-135
ZHANG Long-Chang,ZHANG Hong-Rui.Collaborative Filtering Recommendation Algorithm Based on R Tree.COMPUTER SYSTEMS APPLICATIONS,2016,25(11):131-135