###
计算机系统应用英文版:2016,25(9):212-215
本文二维码信息
码上扫一扫!
基于模块度优化的标签传播社区发现算法
(中国科学技术大学 电子工程与信息科学系, 合肥 230027)
Community Detection for Label Propagation with Modularity Optimization
(Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2535次   下载 3193
Received:January 18, 2016    Revised:March 22, 2016
中文摘要: 标签传播算法(LPA)是一种快速高效的社区发现算法,算法无需社区数量等先验信息,但存在大量随机性,稳定性较差. 为了提高标签传播算法的稳定性,提出了一种改进的标签传播算法(LPAMP). 该算法分为两个阶段,第一阶段以模块度贪婪为依据,进行节点粗聚类;第二阶段在粗聚类的基础上,进行节点标签传播. 实验结果表明,所提算法降低了标签传播算法的随机性,增强了稳定性,并且提高了准确率.
中文关键词: 标签传播  社区发现  模块度  贪婪  优化
Abstract:Label Propagation Algorithm (LPA) is a fast and efficient community detection algorithm and this algorithm does not need to know the prior information such as the number of communities. However, this algorithm has a large number of randomness, which leads to unstable results. In order to improve the stability of label propagation algorithm, we propose an improved label propagation algorithm (LPAMP). The algorithm is divided into two phases. In the first phase, vertices are clustered roughly by optimizing the modularity greedily; in the second phase, the labels propagate through the network based on the result of the first phase. Experimental results show that the proposed algorithm not only reduces the randomness of the label propagation algorithm, but also improves the stability and increases the accuracy.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
李磊,倪林.基于模块度优化的标签传播社区发现算法.计算机系统应用,2016,25(9):212-215
LI Lei,NI Lin.Community Detection for Label Propagation with Modularity Optimization.COMPUTER SYSTEMS APPLICATIONS,2016,25(9):212-215