本文已被:浏览 1760次 下载 2219次
Received:January 13, 2016 Revised:March 10, 2016
Received:January 13, 2016 Revised:March 10, 2016
中文摘要: 互联网时代的到来造成知识的“过度”传播,知识点的分散和无组织使得有系统学习要求的用户无从下手,用户对专业知识的查找、学习变得困难,如何面向用户实现个性化的知识推荐是智能图书系统中需要解决的关键问题之一. 本文利用上下文偏好提取技术,获取用户的兴趣度. 在基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法的基础上引入时间加权因子,较好地解决了对新用户推荐时产生的“冷启动”问题,实现了服务推荐结果的个性化.
Abstract:The advent of the era of the Internet causes the “excessive” of knowledge dissemination, knowledge fragment and disorganization makes users who have requirements of a systematic study difficult to know how to start. How to realize personalized knowledge recommendation for users is one of the key problems to be solved in the intelligent library system. This paper uses the context preference extraction technology to obtain the users' interest. And it introduces weighted factor based on the intelligent library system as an example in the user-based collaborative filtering recommendation algorithm and the collaborative filtering recommendation algorithm, it better solves “cold start” in the recommendation to new users as, implements the service of personalized recommendation results.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
乔亚飞,张霞,张文博.智能图书系统中的个性化推荐.计算机系统应用,2016,25(9):188-192
QIAO Ya-Fei,ZHANG Xia,ZHANG Wen-Bo.Personalized Recommendation in Smart Books Sysmtem.COMPUTER SYSTEMS APPLICATIONS,2016,25(9):188-192
乔亚飞,张霞,张文博.智能图书系统中的个性化推荐.计算机系统应用,2016,25(9):188-192
QIAO Ya-Fei,ZHANG Xia,ZHANG Wen-Bo.Personalized Recommendation in Smart Books Sysmtem.COMPUTER SYSTEMS APPLICATIONS,2016,25(9):188-192