本文已被:浏览 1389次 下载 2645次
Received:December 25, 2015 Revised:February 25, 2016
Received:December 25, 2015 Revised:February 25, 2016
中文摘要: 针对DBSCAN聚类算法不能对变密度分布数据集进行有效聚类,VDBSCAN算法借助k-dist图来自动获取各个密度层次的数据对象的邻域半径,解决了具有不同密度层次分布数据集的聚类问题. k-VDBSCAN算法通过对k值的自动获取,减小了VDBSCAN中参数k对最终聚类结果的影响. 针对k值的自动获取,在原有的k-VDBSCAN聚类算法基础上,依据数据集本身,利用数据对象间距离的特征,提出了一种k值改进自动获取聚类算法. 理论分析与实验结果表明,新的改进算法能够有效的自动获得参数k的值,并且在聚类结果、时间效率方面都有明显的提高.
Abstract:For DBSCAN algorithm can't cluster some variable density data sets effectively, VDBSCAN solved this question by a k-dist figure to automatically obtain the neighborhood radiuses of various density levels of data objects. k-VDBSCAN algorithm obtains the parameter k automatically to reduce the parameter k ‘sinfluence in the final clustering results. Based on the data set itself, using the characteristics of the distance between the data objects, on the basic of the k-VDBSCAN algorithm, an clustering algorithm based on improved parameter k obtained automatically is proposed. Theoretical analysis and experimental results show that the improved algorithm can effectively automatically obtain the value of the parameter k and the clustering results and time efficiency has improved significantly.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
赵文冲,蔡江辉,张继福.改进k值自动获取VDBSCAN聚类算法.计算机系统应用,2016,25(9):131-136
ZHAO Wen-Chong,CAI Jiang-Hui,ZHANG Ji-Fu.Based on Improved Parameter k Chosen Automatically in VDBSCAN Clustering Algorithm.COMPUTER SYSTEMS APPLICATIONS,2016,25(9):131-136
赵文冲,蔡江辉,张继福.改进k值自动获取VDBSCAN聚类算法.计算机系统应用,2016,25(9):131-136
ZHAO Wen-Chong,CAI Jiang-Hui,ZHANG Ji-Fu.Based on Improved Parameter k Chosen Automatically in VDBSCAN Clustering Algorithm.COMPUTER SYSTEMS APPLICATIONS,2016,25(9):131-136