本文已被:浏览 1775次 下载 2317次
Received:January 29, 2016 Revised:February 29, 2016
Received:January 29, 2016 Revised:February 29, 2016
中文摘要: 为提高神经网络的逼近能力,通过在普通BP网络中引入量子旋转门,提出了一种新颖的量子衍生神经网络模型. 该模型隐层由量子神经元组成,每个量子神经元携带一组量子旋转门,用于更新隐层的量子权值,输入层和输出层均为普通神经元. 基于误差反传播算法设计了该模型的学习算法. 模式识别和函数逼近的实验结果验证了提出模型及算法的有效性.
Abstract:To enhance the approximation ability of neural networks, by introducing quantum rotation gates to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this paper. In our model, the hidden layer consists of quantum neurons. Each quantum neuron carries a group of quantum rotation gates which are used to update the quantum weights. Both input and output layer are composed of the traditional neurons. By employing the error back propagation algorithm, the learning algorithms are designed. Simulation-based experiments using two application examples of pattern recognition and function approximation, respectively, illustrates the availability of the proposed model.
keywords: quantum computing quantum rotation gate quantum-inspired neuron quantum-inspired neural network
文章编号: 中图分类号: 文献标志码:
基金项目:东北石油大学研究生创新科研项目(YJSCX2016-030NEPU)
引用文本:
李滨旭,姚姜虹.一种量子衍生神经网络模型.计算机系统应用,2016,25(8):206-210
LI Bin-Xu,YAO Jiang-Hong.Quantum-Inspired Neural Networks Model and Algorithm.COMPUTER SYSTEMS APPLICATIONS,2016,25(8):206-210
李滨旭,姚姜虹.一种量子衍生神经网络模型.计算机系统应用,2016,25(8):206-210
LI Bin-Xu,YAO Jiang-Hong.Quantum-Inspired Neural Networks Model and Algorithm.COMPUTER SYSTEMS APPLICATIONS,2016,25(8):206-210