###
计算机系统应用英文版:2016,25(8):130-134
本文二维码信息
码上扫一扫!
一种自适应的Tri-Training半监督算法
(1.三江学院 计算机科学与工程学院, 南京 210012;2.南京工业大学 计算机科学与工程学院, 南京 210009)
Adaptive Tri-Training Semi-Supervised Algorithm
(1.Department of Computer Science and Engineering, Sanjiang University, Nanjing 210012, China;2.Department of Computer Science and Engineering, Nanjing University of Technology, Nanjing 210009, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1794次   下载 2745
Received:November 30, 2015    Revised:January 18, 2016
中文摘要: Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独立的分类器组合,使得算法可以在多因素下综合评价样本,并在此基础上引入遗传算法动态设置组合权重以适应于具体的样本集,从而尽可能降低样本标注的错误率,多个实验结果表明ADP-Tri-Training算法具有更好的分类性能.
Abstract:Tri-Training algorithm belongs to semi-supervised algorithm,unlabeled samples are often labeled incorrectly in study, and the performance is affected. So the ADP-Tri-Training (Adaptive Tri-Training) algorithm is proposed, cooperative work mode is improved, a classification composition scheme based on geometric center is used, the fuzzy mathematics theory is applied to combine the classifiers, so the algorithm can evaluate the samples by multiple factors, genetic algorithm is introduced to dynamically set the combined weight in order to adapt different sample sets, also it can reduce the error of classifies as far as possible, finally the experimental results show that the proposed algorithm is more effective.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
彭雅琴,宫宁生.一种自适应的Tri-Training半监督算法.计算机系统应用,2016,25(8):130-134
PENG Ya-Qin,GONG Ning-Sheng.Adaptive Tri-Training Semi-Supervised Algorithm.COMPUTER SYSTEMS APPLICATIONS,2016,25(8):130-134