###
计算机系统应用英文版:2016,25(8):29-34
本文二维码信息
码上扫一扫!
五种人民币序列号识别算法抗噪能力比较
(温州大学 物理与电子信息工程学院, 温州 325035)
Comparison of Five Algorithms for Recognizing Serlal Number of Rmb Banknote
(College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 235035, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1555次   下载 2606
Received:December 16, 2015    Revised:January 21, 2016
中文摘要: 为了比较不同的人工神经网络算法识别人民币序列号的性能,研究了离散Hopfield神经网络、BP神经网络、PNN神经网络、GRNN神经网络、SVM神经网络等五种算法的训练耗时、识别速度、识别率和抗噪声能力. 研究结果表明,在五种算法中BP算法的综合表现最差,其次为SVM和Hopfield算法,而PNN和GRNN算法表现最好,不仅识别率最高、训练和识别时间最短,而且具有较强的抗噪声能力.
中文关键词: 神经网络  字符识别  Hopfield  BP  PNN  GRNN  SVM
Abstract:To investigate the performance of different neural network algorithms in identifying serial number of RMB banknote, the training speed, recognizing speed and rate, and ability of anti-noise of five neural network algorithms, including the discrete Hopfield neural network, BP neural network, PNN neural network, GRNN neural network and SVM neural network, are studied. The simulation results show that amongst the five algorithms, BP performs worst, followed by SVM and Hopfield, with PNN and GRNN performs best, not only gives the higher recognition rate, shorter training and recognition time, but also is more robust to noise.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61501331,61178053,61575090)
引用文本:
刘小波,崔桂华,李长军,钱祥忠,严旭.五种人民币序列号识别算法抗噪能力比较.计算机系统应用,2016,25(8):29-34
LIU Xiao-Bo,CUI Gui-Hua,LI Chang-Jun,QIAN Xiang-Zhong,YAN Xu.Comparison of Five Algorithms for Recognizing Serlal Number of Rmb Banknote.COMPUTER SYSTEMS APPLICATIONS,2016,25(8):29-34