本文已被:浏览 1645次 下载 1970次
Received:October 10, 2015 Revised:December 02, 2015
Received:October 10, 2015 Revised:December 02, 2015
中文摘要: 协同过滤推荐算法是目前构建推荐系统最为成功的算法之一,它利用已知的一组用户对物品喜好数据来对推测用户对其他物品的喜好,其中,能够直接刻画用户与项目潜在特征的矩阵分解模型和通过分析物品或者项目间相似度的邻域模型是研究的热点.针对这两个模型存在的不足,提出了一种将邻域模型与矩阵分解模型有效结合的方法,进而构建了一个改进的协同过滤推荐算法,提高了预测准确性.实验结果验证了改进算法的正确性与有效性.
Abstract:Collaborative Filtering(CF) is one of the most successful approaches for building recommender system,it uses the known preferences of a group of users to make predictions of unknown preferences of other users. The matrix factorization models which can profile both users and items latent factors directly,and the neighborhood models which can analyze similarities between users and items are current research focuses.A method of merging both matrix factorization models and neighborhood models is proposed, which can make further accuracy improvements. The experiment results show that this method is correct and feasible.
文章编号: 中图分类号: 文献标志码:
基金项目:河南省重点科技攻关项目(142102210225)
引用文本:
张航,叶东毅.融合邻域模型与矩阵分解模型的推荐算法.计算机系统应用,2016,25(6):154-159
ZHANG Hang,YE Dong-Yi.Recommender Algorithm Incorporating Neighborhood Model with Matrix Factorization.COMPUTER SYSTEMS APPLICATIONS,2016,25(6):154-159
张航,叶东毅.融合邻域模型与矩阵分解模型的推荐算法.计算机系统应用,2016,25(6):154-159
ZHANG Hang,YE Dong-Yi.Recommender Algorithm Incorporating Neighborhood Model with Matrix Factorization.COMPUTER SYSTEMS APPLICATIONS,2016,25(6):154-159