###
DOI:
计算机系统应用英文版:2016,25(5):209-212
本文二维码信息
码上扫一扫!
基于云模型的电力系统负荷组合预测
(1.兰州理工大学 电气工程与信息工程学院, 兰州 730050;2.甘肃省工业过程先进控制重点实验室, 兰州 730050)
Load Forecasting of Power System Based on Cloud Model SVM
(1.Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.Advanced Control Laboratory of Gansu Province Industrial Processes, Lanzhou 730050, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1657次   下载 2358
Received:August 19, 2015    Revised:September 14, 2015
中文摘要: 电力系统负荷预测的精确度决定着电网安全稳定、高效的运行.最小二乘支持向量机(LSSVM)被广泛应用电力系统负荷预测上,然而该方法在处理不确定性问题上有很多不足之处.为了更精确的选择核函数的参数,处理不确定性因素,提高短期负荷预测的精度,提出了一种将云模型、粒子群优化(PSO)和LSSVM相结合的组合模型.首先通过对各影响因子的不确定性分析,按不确定性高低将各影响因子分别应用Cloud-LSSVM和PSO-LSSVM进行预测,然后通过组合模型的加权计算的得到最终预测值.最后,通过仿真对比证明该模型能更好的处理不确定性,从而提高电力系统短期负荷预测精度.
Abstract:The accuracy of load forecasting of power system is the guarantee of the safe, stable and efficient operation of the power grids. Least squares support vector machine (LSSVM) is widely used on the load forecasting of power system, but this method has many shortcomings in dealing with uncertainty problems. In order to improve the accuracy of selecting the parameters of the kernel function, to deal with uncertainty factors and improve the accuracy of short-term load forecasting, this paper proposes a new model which is combined by the cloud model, particle swarm optimization (PSO) and LSSVM. First of all, through analyzing uncertainty of each influence factor, it uses the models of Cloud-LSSVM and PSO-LSSVM separately to predict the impact factor according to the uncertainty, then it achieves the final forecast through the weighted combination model. At last, the simulation of experiment proves that the new model can achieve better load forecast of power system by dealing with the uncertainty factors.
文章编号:     中图分类号:    文献标志码:
基金项目:科技部技术创新基金(13C26215104915)
引用文本:
王惠中,刘轲,杨世亮.基于云模型的电力系统负荷组合预测.计算机系统应用,2016,25(5):209-212
WANG Hui-Zhong,LIU Ke,YANG Shi-Liang.Load Forecasting of Power System Based on Cloud Model SVM.COMPUTER SYSTEMS APPLICATIONS,2016,25(5):209-212