###
DOI:
计算机系统应用英文版:2016,25(5):164-167
本文二维码信息
码上扫一扫!
神经网络和小波变换融合算法的去噪研究
(1.福建师范大学 闽南科技学院, 泉州 362332;2.福建师范大学 医学光电科学与技术教育部重点实验室, 福州 350007)
Devoicing Algorithm Based on Neural Network and Wavelet Transform
(1.Minnan Institute of Science and Technology, Normal University, Quanzhou 362332, China;2.Key Laboratory of medical optoelectronic science and technology, Fuzhou 350007, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1126次   下载 3498
Received:September 14, 2015    Revised:October 26, 2015
中文摘要: 传统小波变换阈值选取采用软阈值和硬阈值方法,这两种阈值方法都存在自身局限性,软阈值方法处理后的系数存在偏差,影响信号的稳定性和连续性,硬阈值方法在处理语音信号时易导致pseudo—Gibbs现象,滤波效果粗糙.根据经验公式确定阈值方法存在不确定性,因此本文通过改进的神经网络遗传算法和小波变换算法进行融合,确定最佳阈值,通过去噪实验证明该融合算法的可行性.
中文关键词: 软阈值  硬阈值  遗传算法  融合算法
Abstract:Aiming at the traditional wavelet transform threshold, the soft threshold and hard threshold method are adopted. The two threshold methods have their own limitations. There is a deviation in the processing of the soft threshold method, which affects the stability and continuity of the signal. The hard threshold method can easily lead to Gibbs-pseudo in processing speech signals. According to the empirical formula, the threshold method is uncertain, so the fusing algorithm based on neural network genetic algorithm and wavelet transform is put forward. The feasibility of the fusion algorithm is demonstrated by experiments.
文章编号:     中图分类号:    文献标志码:
基金项目:福建省教育厅项目(JB11266)
引用文本:
江华丽,王平.神经网络和小波变换融合算法的去噪研究.计算机系统应用,2016,25(5):164-167
JIANG Hua-Li,WANG Ping.Devoicing Algorithm Based on Neural Network and Wavelet Transform.COMPUTER SYSTEMS APPLICATIONS,2016,25(5):164-167