###
DOI:
计算机系统应用英文版:2016,25(4):186-190
本文二维码信息
码上扫一扫!
改进粒子群算法在乙烯收率软测量中的应用
(上海电力学院 自动化工程学院, 上海 200090)
Application of Improved Particle Swarm Algorithm in the Soft Measurement of Ethylene Yield
(College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1150次   下载 1846
Received:July 17, 2015    Revised:August 24, 2015
中文摘要: 针对粒子群算法(PSO)容易陷入局部收敛的问题,提出一种引入反动因子并结合引力定律的方法来改进算法,增强其寻优能力,该改进算法命名为:GPSO算法.该算法利用引力定律快速确定粒子的寻优方向,寻优过程中当粒子陷入局部最优时利用反动因子的引入使粒子跳出局部最优.仿真实验证明该改进算法在收敛速度和寻优能力上都取得了显著效果.最后,用改进的算法优化BP神经网络的参数,获得了乙烯裂解转化率模型,实验结果表明,基于改进算法的神经网络模型能够较好地预测乙烯裂解转化率.
Abstract:According to the problem that the particle swarm optimization(PSO) is easy to fall into local convergence, a new method named GPSO algorithm is proposed to improve the algorithm, which is based on the reaction factor and the law of gravity. The algorithm uses the gravity law to quickly determine the optimal direction of the particles. When the particles fall into local optimum, the particles are drapped out of local optimum. The simulation experiments show that the improved algorithm has achieved remarkable results in the convergence speed and the optimization ability. Finally, the model of ethylene cracking conversion was obtained by using the improved algorithm to optimize the parameters of BP neural network. The experimental results show that the neural network model based on the improved algorithm can better predict the conversion rate of ethylene.
文章编号:     中图分类号:    文献标志码:
基金项目:上海市电站自动化技术重点实验室(13DZ2273800)
引用文本:
王海燕,胡泽浩.改进粒子群算法在乙烯收率软测量中的应用.计算机系统应用,2016,25(4):186-190
WANG Hai-Yan,HU Ze-Hao.Application of Improved Particle Swarm Algorithm in the Soft Measurement of Ethylene Yield.COMPUTER SYSTEMS APPLICATIONS,2016,25(4):186-190