本文已被:浏览 1364次 下载 2486次
Received:July 05, 2015 Revised:September 08, 2015
Received:July 05, 2015 Revised:September 08, 2015
中文摘要: K-Hub聚类算法是一种有效的高维数据聚类算法,但是它对初始聚类中心的选择非常敏感,并且对于靠近类边界的实例往往不能正确聚类.为了解决这些问题,提出一种结合主动学习和半监督聚类的K-Hub聚类算法.运用主动学习策略学习部分实例的关联限制,然后利用这些关联限制指导K-Hub的聚类过程.实验结果表明,基于主动学习的K-Hub聚类算法能有效提升K-Hub的聚类准确率.
Abstract:K-Hub is an efficient high-dimensional data clustering algorithm, but it is sensitive to the choice of initial clustering centers and the instances which besides the class border may not be correctly clustered. In order to solve these problems, an improved method which incorporates active learning and semi-supervised clustering into K-Hub clustering algorithm is proposed. It uses active learning strategy to study pairwise constraints, and then, it uses these pairwise constraints to guide the clustering process of K-Hub. The experiment results demonstrate that the improved method can enhance the performance of K-Hub clustering algorithm.
keywords: high dimensional data semi-supervised clustering pairwise constraints active learning K-Hub
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
封建邦,何振峰.基于主动学习的K-Hub聚类算法.计算机系统应用,2016,25(3):187-193
FENG Jian-Bang,HE Zhen-Feng.K-Hub Clustering Algorithm Based on Active Learning.COMPUTER SYSTEMS APPLICATIONS,2016,25(3):187-193
封建邦,何振峰.基于主动学习的K-Hub聚类算法.计算机系统应用,2016,25(3):187-193
FENG Jian-Bang,HE Zhen-Feng.K-Hub Clustering Algorithm Based on Active Learning.COMPUTER SYSTEMS APPLICATIONS,2016,25(3):187-193