###
DOI:
计算机系统应用英文版:2016,25(3):119-123
本文二维码信息
码上扫一扫!
分片计数布隆过滤器及其在Hbase二级索引的应用
(南京航空航天大学 经济与管理学院, 南京 211106)
Split Counting Bloom Filter and its Application in Hbase Secondary Index
(School of Economics and Management, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1582次   下载 2715
Received:June 24, 2015    Revised:September 06, 2015
中文摘要: 针对Hadoop Database(Hbase)仅支持主索引结构,即通过主键和主键的range来检索数据的问题,提出利用Counting Bloom Filter的新变体建立二级索引来支持非主键数据的检索.分析了已有的Counting Bloom Filter(CBF)技术,针对CBF溢出概率高的问题,提出一种新的Split Counting Bloom Filter(SCBF)技术,SCBF将标准CBF分成多个相互独立的区域,由这多个区域共同存储元素的fingerprint.实验结果表明,与标准CBF相比,SCBF降低了溢出概率,充分提高了过滤器的性能,可以很好地用来建立Hbase二级索引.
Abstract:A new variant of Counting Bloom Filter was set up to build Hbase secondary index to support the retrieval of non-primary key data, which solved the problem that Hbase only supported the main index structure and retrieve data through the primary key and the primary key range. The new variant, Split Counting Bloom Filter(SCBF), was proposed according to the high overflow probability problem of Counting Bloom Filter(CBF) after analyzing existing CBF technology. SCBF divided standard CBF into multiple independent regions, which stored elements' fingerprint by all these areas. Comparing SCBF with CBF, the experimental result shows that, SCBF contributes to much lower overflow probability, which improves the performance of filter, and can be used to build the Hbase secondary index.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
黄璨,方旭昇,张朝泉.分片计数布隆过滤器及其在Hbase二级索引的应用.计算机系统应用,2016,25(3):119-123
HUANG Can,FANG Xu-Sheng,ZHANG Chao-Quan.Split Counting Bloom Filter and its Application in Hbase Secondary Index.COMPUTER SYSTEMS APPLICATIONS,2016,25(3):119-123