###
DOI:
计算机系统应用英文版:2016,25(3):93-100
本文二维码信息
码上扫一扫!
基于机器视觉的随机纹理瓷砖的分选系统
(华南理工大学 机械与汽车工程学院, 广州 510640)
Classification System of Random Texture Ceramic Tiles Based on Machine Vision
(College of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1624次   下载 3039
Received:July 06, 2015    Revised:September 06, 2015
中文摘要: 针对日益加快的瓷砖生产速度与缓慢的人工分选速度之间不协调导致的瓷砖出产效率低下的问题,提出了以机器视觉软件HALCON 11.0为软件开发平台的结合瓷砖颜色、纹理特征提取的算法,以及针对多分类问题的改进多层感知器神经网络算法(MLPNN).首先对拍摄到的瓷砖图像进行去噪预处理,在HSI颜色空间中提取瓷砖的色调(Hue)特征并计算反映瓷砖的纹理特征的灰度共生矩阵(GLCM)和灰度幅值分布特征,再将得到的特征作为多层感知器的神经网络输入层神经元,然后设计以softmax为激活函数的多层感知器神经网络来进行模式匹配,并与BP神经网络模式匹配方法进行对比,最终搭建出具有简单人机交互界面的随机纹理瓷砖的分选实验样机.实验结果表明:本系统对实验的各类随机纹理瓷砖的分选准确率都在90%以上,具有较高的分选准确率,能应用于瓷砖生产实践.
Abstract:Aiming at the problem of poor efficiency of ceramic tile production caused by the mismatch between higher and higher speed of production and slow speed of artificial classification, the paper presented an algorithm about extracting the features of color and texture of ceramic tiles and an algorithm about improved multilayer perceptron neural network(MLPNN) aiming at the problem of multi-classification based on machine vision software, HALCON 11.0, as the development platform. Firstly, the images of ceramic tiles were denoised as pretreatment. Then the system extracted the hue features of ceramic tiles in HSI color space, calculated the gray level co-occurrence matrix(GLCM) and gray level characteristics of amplitude distribution to reflect the texture feature of ceramic tiles, and put the features as input layer neurons of multilayer perceptron neural network. Next, the paper designed the multilayer perceptron neural network with putting softmax function as the activation for pattern matching, and compared with the pattern matching method of BP neural network. Finally, an experimental prototype of classification system was built with simple user interface. The experimental results show that, the classification accuracy for all kinds of ceramic tiles in the experiments are over 90%. The system has high classification accuracy for the random texture ceramic tiles and can be applied to production of ceramic tiles.
文章编号:     中图分类号:    文献标志码:
基金项目:广东省教育部产学研结合项目(2012B091100109)
引用文本:
焦亮,胡国清,Jahangir Alam SM.基于机器视觉的随机纹理瓷砖的分选系统.计算机系统应用,2016,25(3):93-100
JIAO Liang,HU Guo-Qing,Jahangir Alam SM.Classification System of Random Texture Ceramic Tiles Based on Machine Vision.COMPUTER SYSTEMS APPLICATIONS,2016,25(3):93-100